三年级拓展数学教案下册
教学内容
人教版《义务教育课程标准实验教科书·数学(三年级上册)》“有余数的除法”例1,例2。
教学目标
1、利用学生已有知识,教学竖式计算表内除法,掌握除法竖式中的各部分含义。
2、认识余数,知道余数的含义。
3、培养学生的动手操作能力和小组合作能力。
4、经历发现知识的过程,感受数学与生活的联系,并从中体会到探究的乐趣。
教学重点:能正确地将表内除法列成竖式来计算和有余数除法的意义。
教学难点:理解有余数除法的意义。
教具、学具:小方块。
教学过程
一、复习旧知:
1、老师说算式,学生抢答。
54÷6=42÷6=72÷9=
2、最大能填几?
()×4<25()×7<60()×4<10
二、情境探究,感受新知
1、教学例题1
(1)利用课件演示例1:提出问题,引出笔算。
学校运动会开幕式即将就要举行了,需要布置会场。小朋友先般来15盆花,他们打算每组摆5盆,可以摆几组?老师想请我们班的同学来分一分。
(2)动手操作:请同学上讲台进行分一分
(3)提问思考:有15盆花,每5盆摆一组,摆成了几组?15盆花有没有摆完?想一想15里面有几个5?
(4)尝试列式:如果用计算的方法来解决这个问题。你能列出算式吗?
15÷5=3(组)
(5)加法和减法中,我们都能用竖式来计算,那么除法如何列竖式来计算呢?
(6)(课件出示:竖式)仔细阅读课本P50页,看看这个竖式中的每一个数和符号表示什么意思?同时了解竖式中各部分的名称。
(7)练习:竖式计算(并说出各部位的名称)
27÷3=
2、教学例题2
(1)课件演示例2:同学们打算将班级联欢会的会场用鲜花布置,同学们将校园一角的23盆花全部搬到了会场,还是每5盆摆一组,最多可以摆成几组?
(2)23盆花平均每组摆5盆,用什么方法来计算?(除法);如何列算式?(23÷5)
(3)动手操作:让学生小组合作,用学具代替23盆花来摆一摆。看看每5盆摆一组,能不能全部分完?还剩几盆?剩下的够不够再分一组?
(4)尝试列式:23÷5=4(组)……3(盆)
(5)认识余数:余下的3盆不够再分一组,我们就把这3盆叫做余数,我们把这样的除法,叫做有余数的除法。(接着板书课题:有余数的除法)
(6)观察比较:看看例1和例2的竖式,比一比,从这两道题的计算中你发现了什么?(发现了当余数是0,也就是没有余数,刚好能被分完、而有余数表示剩下的不能分的部分)
3、小结余数的含义
余数就是不够再分而剩余下来的数,就像分5盆一组,3盆因为不够分成一组,而是剩余下来的,所以余数要比除数小(板书:余数要比除数小)
三、巩固拓展,运用新知
1、完成51页做一做。
2、现在从小袋子中拿出50个小方块,平均分给8个小朋友,每人分得几个?剩余几个?你会列算式和列竖式吗?(学生小组合作完成)
四、归纳小结,结束全课。
同学们,这节课你有什么新的收获?
五、板书设计
有余数的除法
1、余数表示剩下的不能分的部分
2、余数要比除数小
三年级拓展数学教案下册篇2
【教学目标】
1、使学生在理解算理的基础上,初步掌握用一位数除两位数、除整百整十数的口算方法,能正确、迅速地进行口算、
2、培养学生认真口算和检查的良好学习习惯、
【教学重点】理解算理的基础上掌握口算的方法、
【教学难点】理解用一位数除的算理,正确进行口算
【教学设计】
一、导入新课
1、口答
(1)24是由几个十、几个一组成的?84呢?
(2)42个十,90个十各是多少?
2、口算:
36÷324÷230÷360÷6
48÷484÷480÷290÷3
二、教授新课:
出示主题图:
根据你的观察,你看看这幅图里面有哪些数学信息?
你能用你已有的知识解决途中提出的问题吗?
1、3次就能运完这60箱,赵伯伯平均每次运多少箱?
你是怎么解决这个问题的?和你小组里的同学商量商量。也可以用你们手中的工具帮助你说明你的思路。
小组汇报:解题思路
(1)想口诀二三得六2×3=66÷3=260÷3=30
(2)20×3=6060÷3=30
(3)把60平均分成3份,每份是20。60÷3=30第一个问题轻松解决,第二个问题也没问题
2、王叔叔有600箱西红柿,他也运3次就运完了,王叔叔平均每次运多少箱?
你是怎样计算的?小组里面说说。
600÷3=200(箱)
3、李阿姨要运240箱黄瓜,也运3次,李阿姨平均一次运多少箱?
240÷3=
这题如何考虑?
4、小结:除数是一位数的口算除法,在计算时可以如何思考?
可以想口诀,还可以用以前学的乘法运算来思考,还可以用数的组成的知识来解决。只要能正确的计算,什么方法都可以。
二、课堂练习:做一做
知识介绍:除号的由来
三年级拓展数学教案下册篇3
教学目标
(一)知识与技能
使学生在具体的情境中,简单的两位数除以一位数(被除数是几十几的数),能正确地进行计算。
(二)过程与方法
通过观察、操作、讨论的活动,使学生经历探索口算除法的全过程。渗透转化和迁移类推的数学思想,加深对口算除法的理解,发展数感。
(三)情感态度和价值观
让学生感受数学与日常生活的联系,在探索的过程中获得成功的体验。
教学重难点
教学重点
掌握口算两位数除以一位数,被除数是几十几的计算方法。
教学难点
理解口算两位数除以一位数,被除数是几十几除法的算理。
教学工具
ppt课件
教学过程
(一)复习
1、口算练习
60÷3=360÷9=80÷4=
300÷6=2400÷6=4000÷5=
2、想一想,填一填
(1)84里有()个十,()个一。
(2)46里有()个十,()个一。
(3)62里有()个十,()个一。
(二)探究新知
今天我们继续学习一位数除两位数的口算,来我们一起看看这道题。
1、动手操作,理解算法
(1)出示例题:
把66张彩色手工纸平均分给3人,每人得到多少张?
(2)读题,你知道了哪些信息?要求什么呢?
生:要把66张彩色手工纸平均分成3份,求每份是多少。
(3)理解题意并列式
板书:66÷3=
3、学生自己试着做一做并说明理由,可以借助小棒图。
4、全班交流,说说你的想法。
预设:
生1:66就是6捆和6根小棒,平均分给3个人,每人得到2捆和2根小棒,就是22根小棒。
生2:我是这样想的:把6个十平均分成3份,每份是2个十,6个一平均分成3份,每份是2个一,和起来就是22。
师用多媒体演示分一分
5、借助图片,理解算理
出示图片1:
60÷3=20
6÷3=2
20+2=22
小结:两位数除以一位数的口算方法是:先用十位上的数除以一位数,再用个位的数去除以一位数,最后把两部分合起来就是商。
6、口算,说一说你是怎么想的?
96÷3=46÷2=
(三)巩固练习:
练一练
64÷2=84÷4=77÷7=
28÷2=69÷3=63÷3=
210÷3=350÷5=8100÷9=
420÷6=160÷2=1200÷6=
(四)总结
这节课你有什么收获?
(五)作业布置
作业:第13页练习三,第5题;
第14页练习三,第7题、第9题、
第10题
三年级拓展数学教案下册篇4
教学目标
1、知识与技能:使学生在具体的情境中,理解和掌握整十、整百数和整千数除以一位数的口算方法,能正确地进行计算。
2、过程与方法:通过观察、操作、讨论的活动,使学生经历探索口算除法的.全过程。渗透转化和迁移类推的数学思想,加深对口算除法的理解,发展数感。
3、情感与价值观:让学生感受数学与日常生活的联系,在探索的过程中获得成功的体验。
教学重难点
教学重点:掌握商是整十、整百和整千的口算除法方法,能正确进行计算。
教学难点:理解商是整十、整百和整千的口算除法算理。
教学工具
多媒体课件彩色手工纸10盒
教学过程
1、复习引入
1、1、认识盒装手工纸数目
师:拿一盒手工纸,让学生猜一猜里面有多少张?
学生猜后教师打开演示:介绍每沓10张,每盒100张。
1、2、师演示、生口答
(1)1盒里面有()沓手工纸,10沓有()个十张;
(2)2沓纸有()张,有()个十张;
(3)80张纸有()沓;
(4)2盒纸有()张,()个百张;
(5)400张能装()盒,有()个百张。
【设计意图】通过边演示边说想法,明确一沓就是一个十,几沓就是几十,为后面的学习做好铺垫。
2、探究新知
教学例1
2、1、探索60÷3的口算方法。(课件出示例1)
把60张彩色手工纸平均分给3人,每人得到多少张?
(1)认真审题,独立学习。
说一说:你知道哪些信息?需要解决什么问题?你会列算式吗?(板书:60÷3)
师:为什么用除法计算?(总数÷份数=每份数)
想一想:应该怎样口算?
学生思考后,以小组为单位拿出一盒手工纸或小棒操作一下,把你的想法在小组中与同学说一说。
(2)汇报交流、耐心倾听。
师:谁来说一说你是怎样算的?
预设1:60张纸就是6沓,先每人分一沓,共分掉3沓,剩下3沓再每人分一沓,刚好分完。这样每人得到2沓,2沓就是20张。
预设2:60张纸就是6沓,6沓平均分给3人,每人得到2沓,2沓就是20张。(课件演示)
预设3:60里有6个十,6个十除以3是2个十,就是20。(板书横式:6÷3=260÷3=20)
预设4:30×2=60或2×30=60可以得出60÷3=20。(想乘法算除法)
预设5:60—20—20—20=0共减3次,所以60÷3=20。
预设6:20+20+20=60所以60÷3=20。
【设计意图】教材在这里的编写意图,是以直观为支撑,形数结合。教师要尽量地多给出学生独立思考的时间,让不同层次的学生在充分的时间内亲历解决问题的过程。体会算法的多样化,在自主探索中运用新知转化成旧知即表内除法的思想方法,化难为易,理解算理。
(3)算法优化,理清算理。
你认为以上算法哪一种比较好?为什么?
请与预设3相同学生再说一说,理解后,其他学生与同桌再互相说一说。
【设计意图】学生口算除法往往喜欢这样说:先不看“0”,算完后商末尾添上“0”。这是一种描述的语音,是一种机械记忆的方法,这样的描述有时容易产生误解。如有学生说出,教师千万不可回避,应耐心帮助学生理清其中的道理:先不看“0”,算完后商末尾添上“0”(算法)。其实这种规律的总结是预设3(算理)的翻版。口算教学应让学生充分理解算理,使学生尽可能用较为简洁的语言表述计算过程。如60÷3表示把60看作6个十,6个十除以3是2个十,就是20;教学时,可以让学生说说自己是怎样算的,引导学生将整十数除以一位数转化为表内除法。只有这样充分地考虑到学生的后续学习,沟通前后知识的联系,总结出来的方法才能真正地为以后的学习服务。
(4)揭示课题、巩固方法。
师:刚才我们计算了60÷3=20(张),它就是口算除法。(板书课题)
抢答题(卡片出示正反两面)
5÷5=4÷29÷38÷4
50÷5=40÷2__________
根据前两组的规律,让学生猜一猜后面每一组算式,口算后说出算理。
同学们真厉害,下面有信心再解决一些问题吗?
600÷3=(课件出示)
2、探索一位数除整百和整千数的商
(1)你是怎样计算的?和同桌交流一下。(汇报后集体订正)
预设1:6盒除以3,每人得2盒,2盒就是200。
预设2:6个百除以3是2个百,就是200。(让多名学生再说一说,如不理解可用教具演示。)
(2)那么6000÷3呢?
【设计意图】在60÷3和600÷3的基础上,学生利用知识的迁移,直接类推出口算方法和结果。
2、3、引导小结:口算整十数、整百数和整千数除以一位数时,我们可以把整十数看成几个十,把整百数看成几个百,把整千数看成几个千,转化成表内除法再进行口算较为简便。
1、探索120÷3的口算方法。(课件出示例2)
3个班上手工课一共用去120张彩色手工纸,平均每班用了多少张?
认真审题,独立学习。
说一说:你知道哪些信息?需要解决什么问题?你会列算式吗?(板书:120÷3)
师:为什么用除法计算?(总数÷份数=每份数)
想一想:应该怎样口算?
先思考,再小组合作交流,可利用盒中的手工纸或小棒边操作边说。
汇报交流、耐心倾听。
师:谁来说一说你是怎样算的?
预设1:可以把120张看成12沓,12沓除以3是4沓,就是40。分步算式:
12÷3=4120÷3=40(生汇报师课件演示)
预设2:可以把120看成12个十,12个十除以3是4个十,就是40。分步算式:
12÷3=4120÷3=40
(3)算法优化,理清算理。
你认为以上两种算法哪一种比较好?为什么?
请与预设2相同的学生再说一说,理解后其他学生再与同桌互相说一说。
(4)1200÷3呢?(板书)
【设计意图】学生已有第一节课口算除法的基础,通过复习用简洁的语言表述一位数除法的计算过程,学生会很自然地迁移类推出一位数出几百几十的口算方法,配上直观操作演示,更加深了学生对算理的理解。在交流和复述中培养了学生数学表达能力。
小结:在计算一位数除几百几十时,可以将几百几十看作几个十的数除以一位数,把它转化为表内除法。
1、探索66÷3的口算方法。(课件出示例3)
把66张彩色手工纸平均分给3人,每人得到多少张?
(1)摆出准备好的66张纸或小棒,让学生分一分,说一说是怎样分的?
(2)多名学生说后,教师课件演示,并填空。
先分(),每份分得()沓,再分(),把单张的分成了()份,每份分得()张,分完后每份共有()张。
(3)说明计算方法:66张手工纸有6沓(每沓十张)和6张,也就是66可以分成6个十和6个。先分整沓的,就是把6个十平均分成3份,每份是2个十,再分单张的,就是把6个一平均分成3份,每份是2个一,最后再把每份中整沓和单张合起来20+2=22,就是所求的结果。
分步算式:60÷3=206÷3=220+2=22(板书)
(4)引导小结
都是“先分后合”把几十几分成两部分:整十数和一位数。分别除以几再相加。将新问题转化为已经学过的知识来解决。
【设计意图】这是两位数除以一位数,每一位都能除尽的例题。学生通过边分手工纸或小棒操作,边说出口算步骤,让学生充分理解算理。它采用的是“先分后合——化难为易”,将新问题分两部分转化成表内除法来解决问题。为了降低难度,教师以板书分步算式来解释口算方法,这样能更好地提高学生的口算能力,为笔算除法打下基础。
3、课堂练习
3、1、算一算,说一说。
8÷4=()15÷5=()
80÷4=()150÷5=()
800÷4=()1500÷5=()
9÷3=()24÷6=()
90÷3=()240÷6=()
900÷3=()2400÷6=()
你是怎么算的?对比这两组题有什么相同点与不同点。
附答案:
8÷4=(2)15÷5=(3)
80÷4=(20)150÷5=(30)
800÷4=(200)1500÷5=(300)
9÷3=(3)24÷6=(4)
90÷3=(30)240÷6=(40)
900÷3=(300)2400÷6=(400)
左边这组题商的位数与被除数相同。右边这组题商的位数比被除数少一位。
3、2、解决问题。
一共90人,先排成人数相同的9列,再围成人数相同的3个圆圈。
(1)每列多少人?(2)每个圆圈多少人?
附答案:
(1)90÷9=10(人)答:每列10人。
(2)90÷3=30(人)答:第个圆圈30人
又出示了一组“智慧岛”习题。
附答案:
20元=200角200÷5=40(枝)答:可以买40枝铅笔。
20÷2=10(本)答:可以买10本。
4、巩固提升
4、1、填一填。
2、填出里()的数。
3、解决问题。
一只东北虎的体重是一只鸵鸟的4倍,是一只企鹅的9倍。
请你自己算一算企鹅和鸵鸟的体重。
附答案:
360÷9=40(千克)答:企鹅的体重是40千克。
360÷4=90(千克)答:企鹅的体重是90千克。
【设计意图】练习时要求学生灵活运用已有知识和经验来解决问题,促进学生探索规律,发现简便的口算方法,正确口算出结果,注重培养学生养成验算和反思的习惯。
课后小结
a提问:
这节课你学到了什么?
b师生总结
今天我们学习了一位数除两位数、除整百整十数的口算,这些口算内容,在日常生活中经常用到,同时又可以为后面学习除数是两位数的笔算除法打下基础、加强这局部口算练习,有利于提高计算能力。
板书
口算除法
把两位数分成整十数和一位数,分别除以一位数后再相加。
60÷3=20
600÷3=200
120÷3=40
66÷3=22
三年级拓展数学教案下册篇5
一、创设情境,导入新课。(三分钟)
同学们!今天,老师来是和大家初次合作,同学们想了解为什么由我给大家上数学课?这是我们老师抽签决定的,第一次先抽教几年级,一至五年级你觉得会有几种可能性?抽到那个年级的可能性比较大?第二次抽科目,语数英你们说会有几种可能性?哪一科的可能性比较大?
真聪明!今天我们就利用数学课研究研究生活中的可能性。
(板书课题:可能性)
设计意图:通过师生之间的对话,既活跃气氛,拉近师生之间的距离,又让学生体会到我们的身边到处是数学知识,培养学生对数学的兴趣,使学生带着快乐的心情学习数学。
二、玩一玩:
1、活动一——转盘(五分钟)
同学们,看看老师带来了什么?(出示转盘)现在老师想转动它,大家猜一猜指针最有可能停在哪种颜色上?(学生说)为什么?说说你的理由。
教师转动转盘,验证。
师:老师这里还有两个转盘,想不想再猜一猜?(出示两个转盘,学生观察,判断)
班内集体反馈,重点让学生说说可能性大的原因。
设计意图:在判断的基础上说明理由,是锻炼孩子判断说理的能力,初步让学生体会为什么某些事发生的可能性大小会不同,同时体会可能性的大小与什么有关。
2、活动二——抛纸杯(十二分钟)
1)问:老师这里有一个纸杯,如果老师把纸杯抛出去,掉到桌面上,大家猜一猜会出现什么情况?(学生猜,引导学生补充完整三种情况)
2)问:出现这三种情况的可能性一样大吗?(学生猜)
3)师:我们的猜测是否正确呢?请同学们抛纸杯,验证一下。
活动要求:
A、先独立活动,每人抛5次,把抛的结果记录在抛纸杯表格中。
B、抛完以后,小组长汇总,把你们小组出现每种情况的次数进行合计。
C、组长统计完以后,观察组长记录的表格,看看你会有什么发现。
D、在活动过程中,注意小伙伴之间的合作,仔细观察,认真操作,认真记录。
4)学生活动。教师参与到小组中,指导学生的活动。
5)班内反馈。
A、请学生在班内说说自己的发现,用出现次数的多少来证明可能性的大小。
B、看到这种情况,你有问题吗?(如果学生提不出,教师问)为什么纸杯躺着的可能性大呢?(让学生说说)
C、与我们的猜测怎么样?看来,同学们的猜测能力很棒!
过渡语:我们平时都玩过纸牌,现面咱们看一看纸牌中有没有我们要研究的可能性。
3、活动三——摸纸牌(六分钟)
第一步:摸纸牌
1)教师出示盒子,内装1黑桃2红桃。“盒子里有1张黑桃,2张红桃,任意摸出一张,会出现什么情况呢?那种花色的可能性要大一些?”
2)盒里再加3张梅花。“如果老师再放入3张梅花,任意摸出一张牌,会出现什么情况呢?那种花色的可能性要大一些?为什么”
(出现三种可能性与牌的颜色有关)
第二步:讨论
师:大家看,现在盒子里的牌,怎么样?(2黑桃2红桃)如果老师要摸出两张牌,可能出现哪些结果?
1)学生独立思考后,在小组内讨论会有哪些结果,填在表格里。
2)班内反馈:三种情况(黑黑、红红、黑红)“哪种可能性比较大?”
3)摸牌验证。9个人上前抽牌验证,组长纪录。
4)观察摸牌记录,说说发现。“观察你们的摸牌记录,是不是我们猜测的三种结果,哪种可能性最大?”
第三步:练习(四分钟)
设计意图:通过组织两个与学生日常生活密切相关的情境,让学生在生活中自己发现问题、解决问题,学会分析生活中的数学现象。人文性的教学内容能有效的接轨学生的生活现实、有效激发学生的已有经验、有效激发学生的探索兴趣。通过小组探究,学会合作学习,进一步验证可能性发生的大小与什么密切相关,从而为推理和猜测提供理论依据,弥补各自知识上的缺陷。
4、活动四———抛骰子(八分钟)
师:同学们真棒,都可以当猜测家了。可能性与我们的生活联系非常紧密。
来读一读这个小知识。课件出示“你知道吗?”,学生读一读,说一说。
瞧,在生活中,我们的孩子可都是有心人,那比赛中,会怎么样呢?下面请同桌小朋友,一个当甲、一个当乙,进行比赛,以抛骰子决定胜负,每人抛一次,如果抛到骰子数大于2,甲胜,在这里打个钩,如果抛到小于2,乙胜,在这里打个钩,如果抛到2,重新来一次。
请同桌小朋友一边玩一边填写记录表。
活动结束,师:哪一桌小朋友愿意把你们玩的结果让大家一起来分享?
师:你喜欢当甲,还是当乙?并说说为什么?
(甲胜的可能性大,乙胜的可能性小)为什么说甲赢的可能性大,乙赢的可能性小呢?
(甲抛到3,4,5,6就赢,乙抛到1才能赢)
师:我们小朋友真聪明,从实验中发现,甲只要抛到3,4,5,6就赢,有四次机会,乙只有抛到1才能赢,只有一次机会,结果是甲赢的可能性比较大,乙胜的可能性比较小。那你们觉得这样的比赛公平吗?(不公平)
师:那你们能不能想个办法,让他们的比赛变得公平?
小结:我们同学多会动脑筋啊,用自己的智慧,使比赛变得公平而有意义!
设计意图:学生在实践中体会游戏的公平与否,学生可以从自身的实际基础出发来解决,使学生发现问题并很好的解决问题,在解决问题中体现人文性,因为学生需要的不是复制别人的数学,而是去构建自己的数学。
三、返回生活,巩固延伸(两分钟)
师:这节课的学习,你快乐么?为什么?
师:小朋友今天学到的还真多,你能运用今天学到的知识说说生活中摸奖的现象吗?
师:那你想跟周围摸奖的人说些什么呢?
设计意图:“你快乐吗?”我们关注的不仅是学生学到了什么知识,而且更加关注学生情感的变化,用数学知识揭示生活中的现象,进一步体现数学知识的生活价值。学生在宽松、和谐、愉悦的氛围中学习才能真正提高学生的数学素养。让学生保持好奇心继续去学习,这才是我们最理想的数学课堂。
四、思考
1、盒子里装9个白球,3个黄球,1个红球,闭上眼任意摸出两个球,结果有几种可能,请列举出来。
设计意图:学生在前面的学习有了充分的感官认知,有了一定的理论基础,让学生把感官认知与理论结合起来,分析问题、解决问题,提高学生对事物发生可能性的理性认识和思考。
三年级拓展数学教案下册篇6
教学目标:
1、知识目标:通过比较分数的大小,加深对分数意义的理解。
2、能力目标:能比较分母相同的或分子是1的两个分数的大小。
3、情感目标:培养学生的动手观察﹑比较和初步对比、总结的能力,在引导探索知识的过程中,培养良好的学习习惯。
教学重难点:
将例题交给学生去自学,探究比较分数大小的方法。学生更容易理解。
教学过程:
一、创境激趣
同学们喜欢听故事吗?下面我们就一起欣赏一段非常有意思的故事。
讲述(故事大意)猪八戒在取经的路上,忽然找到一个大西瓜,他刚要吃,悟空一个筋斗翻到了他的跟前:八戒,这个西瓜我们分开吃,你吃西瓜的1/2,我吃西瓜的1/2,(师板书:1/2)八戒听了满脸不高兴,这个西瓜是我发现的,我要多吃,我要吃西瓜的1/4(师板书1/4)
师:同学们说,八戒能多吃到西瓜吗?要想知道八戒能不能多吃到西瓜,我们必须解决一个什么问题呢?
师:这节课我们就来研究比较一下分数的大小(板书课题:比大小)
二、互动解疑
1、比较分子是1的分数大小
(1)质疑:
下面我们就来比较以下1/2和1/4(指板书)谁大谁小?为了直观地比较出谁大谁小,请同学们四人一组,拿出手中的正方形纸分一分,涂一涂,发挥集体的力量,看能不能得到答案。
(2)四人一组合作学习,分一分,涂一涂,比一比,说一说。
(3)交流汇报。
①出示图(见课本61页右上图)。
②小组选代表说出自己的小组比较的思维过程(师适当引导并小评)
(4)小结:把两张完全相同的正方形的纸,一张平均分成4份,表示其中的一份,就是1/4,而一张纸平均分成2份,表示其中的一份,也就是1/2,4份中的一份比2份中的一份少,也就是平均分的份数越多,得到的一份越少,所以1/2>1/4。
刚才我们知道了把两张相同的正方形的纸分成不同的份数,都取其中1份,这样的两个分数谁大谁小,而如果把两张相同正方形的纸都分成相同的几份,取不同的份数,这样的两个分数,哪一个大哪一个小呢?
三年级拓展数学教案下册篇7
教学内容:16页例2
1、教学目标:会进行相应的乘、除法估算和验算。
2.在实践操作活动中学会思考,学会解决问题。
教学重点、难点:抽象对算式进行估算。
教学过程:
一、听算。
二.新授:
1、由情境引出估算这个生活中的数学。引导学生知道是生活中的需要。
2、出示例题2,“你有什么样的解答方法?”
3、学生一边说,教师一边列示124÷3≈,让学生明白解决问题可以有不同方法,只要合理都可以采用。
4、让学生多说自己的想法,但注意其完整及简洁。
5、小结,总结加强。
三.巩固练习:
做一做:
1、260÷4≈260可以看成240,也可以看成280。
2、估算练习。
四、作业:第18页6、7题。