数学高考复习教案
《正弦定理》
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点
三学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。
数学高考复习教案篇2
古典概型
学情分析
(二)教学目标
1.知识与技能:
(1)通过试验理解基本事件的概念和特点;
(2)通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;
(3)会求一些简单的古典概率问题。
2.过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。
3.情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(三)教学重、难点
重点:理解古典概型的概念,利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。
(四)教学用具
多媒体课件,投影仪,硬币,骰子。
(五)教学过程
[情景设置]
[温故知新]
(1)回顾前几节课对概率求取的方法:大量重复试验。
(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。
[探究新知]
一、基本事件
思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?
试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?
定义:一次试验中可能出现的每一个结果称为一个基本事件。
思考:掷一枚质地均匀的骰子
(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗
(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?
掷一枚质地均匀的硬币
(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗
(2)“必然事件”包含哪几个基本事件?
基本事件的特点:(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
二、古典概型
思考:从基本事件角度来看,上述两个试验有何共同特征?
古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;
(2)每个基本事件出现的可能性相等。
师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。
向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?
(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?
三、求解古典概型
思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?
(1)基本事件的概率
试验1:掷硬币
P(“正面向上”)=P(“反面向上”)=
试验2:掷骰子
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为
(2)随机事件的概率
掷骰子试验中,记事件A为“出现点数小于3”,事件B为“出现点数大于3”,如何求解P(A)与P(B)?
结论:古典概型中,若基本事件总数有n个,A事件所包含的基本事件个数为m,则
P(A)=
古典概型的概率计算公式:
[实战演练]
例1.标准化考试的选择题有单选和不定项选择两种类型。假设考生不会做,随机从A、B、C、D四个选项中选择正确的答案,请问哪种类型的选择题更容易答对?
分析:解决这个问题的关键在于本题什么情况下可以看成古典概型。如果考生掌握了所考察的部分或全部知识,这都不满足古典概型的第2个条件—等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才为古典概型。
数学高考复习教案篇3
教学目标
1、知识与技能
(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法
通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观
通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点
重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)
【探究新知】
1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)
(板书:一、我们生活中的周期现象)
2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:
①如何理解“散点图”?
②图1-1中横坐标和纵坐标分别表示什么?
③如何理解图1-1中的“H/m”和“t/h”?
④对于周期函数的定义,你的理解是怎样?
以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。
(板书:二、周期函数的概念)
3.[展示投影]练习:
(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。
求f(x+2T),f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。
(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=20__,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=20__
(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2
【巩固深化,发展思维】
1.请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。
2.例题讲评
例1.地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数
y=f(t)是不是周期函数?
例2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是θ的周期函数。
例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。
3.小组课堂作业
(1)课本P6的思考与交流
(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业
1.作业:习题1.1第1,2,3题.
2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
1.作业:习题1.1第1,2,3题.
2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.
板书
数学高考复习教案篇4
(一)教学内容
本节课选自《普通高中课程标准实验教科书》人教A版必修3第三章第二节《古典概型》,教学安排是2课时,本节课是第一课时。
(二)教学目标
1.知识与技能:
(1)通过试验理解基本事件的概念和特点;
(2)通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;
(3)会求一些简单的古典概率问题。
2.过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。
3.情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(三)教学重、难点
重点:理解古典概型的概念,利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。
(四)学情分析
[知识储备]
初中:了解频率与概率的关系,会计算一些简单等可能事件发生的概率;
高中:进一步学习概率的意义,概率的基本性质。
[学生特点]
我所带班级的学生思维活跃,但对基本概念重视不足,对知识深入理解不够。善于发现具体事件中的共同点及区别,但从感性认识上升到理性认识有待提高。
(五)教学策略
由身边实例出发,让学生在不断的矛盾冲突中,通过“老师引导”,“小组讨论”,“自主探究”等多种方式逐渐形成发现问题,解决问题的思想。
(六)教学用具
多媒体课件,投影仪,硬币,骰子。
(七)教学过程
[情景设置]
有一本好书,两位同学都想看。甲同学提议掷硬币:正面向上甲先看,反面向上乙先看。乙同学提议掷骰子:三点以下甲先看,三点以上乙先看。这两种方法是否公平?
☆处理:通过生活实例,快速地将学生的注意力引入课堂。提出公平与否实质上是概率大小问题,切入本堂课主题。
[温故知新]
(1)回顾前几节课对概率求取的方法:大量重复试验。
(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。
[探究新知]
一、基本事件
思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?
试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?
定义:一次试验中可能出现的每一个结果称为一个基本事件。
☆处理:围绕对两个试验的分析,提出基本事件的概念。类比生物学中对细胞的研究,过渡到研究基本事件对建立概率模型的必要性。
思考:掷一枚质地均匀的骰子
(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗
(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?
掷一枚质地均匀的硬币
(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗
(2)“必然事件”包含哪几个基本事件?
基本事件的特点:(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
☆处理:引导学生从个性中寻找共性,提升学生发现、归纳、总结的能力。设计随机事件“出现点数小于3”与“出现点数大于3”与课堂引入相呼应,也为后面随机事件概率的求取打下伏笔。
二、古典概型
思考:从基本事件角度来看,上述两个试验有何共同特征?
古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;
(2)每个基本事件出现的可能性相等。
☆处理:引导学生观察、分析、总结这两个试验的共同点,培养他们从具体到抽象、从特殊到一般的数学思维能力。在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散。
师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。
(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?
(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?
设计意图:让学生通过身边实例更加形象、准确的把握古典概型的两个特点,突破如何判断一个试验是否是古典概型这一教学难点。
三、求解古典概型
思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?
(1)基本事件的概率
试验1:掷硬币
P(“正面向上”)=P(“反面向上”)=
试验2:掷骰子
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为
☆处理:提出“如果不做试验,如何利用古典概型的特征求取概率?”
先由学生分小组讨论掷硬币试验中基本事件的概率如何求取并规范学生解答,同时点出甲同学提出的“掷硬币方案”的公平性;再由学生分析掷骰子试验中基本事件概率的求解过程并得出一般性结论。
(2)随机事件的概率
掷骰子试验中,记事件A为“出现点数小于3”,事件B为“出现点数大于3”,如何求解P(A)与P(B)?
数学高考复习教案篇5
一、总体设想:
本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。
二、教学目标:
1.了解向量的数量积的抽象根源。
2.了解平面的数量积的概念、向量的夹角
3.数量积与向量投影的关系及数量积的几何意义
4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算
三、重、难点:
【重点】1.平面向量数量积的概念和性质
2.平面向量数量积的运算律的探究和应用
【难点】平面向量数量积的应用
课时安排:
2课时
五、教学方案及其设计意图:
1.平面向量数量积的物理背景
平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a,b的数量积的概念。
平面向量数量积(内积)的定义
已知两个非零向量a与b,它们的夹角是θ,则数量abcos(叫a与b的数量积,记作a(b,即有a(b=abcos(,(0≤θ≤π).
并规定0与任何向量的数量积为0.
零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a(b=abcos(无法得到,因此另外进行了规定。
3.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
,是记法,是定义的实质――它是一个实数。按照推理,当时,数量积为正数;当时,数量积为零;当时,数量积为负。
4.“投影”的概念
定义:bcos(叫做向量b在a方向上的投影。
投影也是一个数量,它的符号取决于角(的大小。当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当(=0(时投影为b;当(=180(时投影为(b.因此投影可正、可负,还可为零。
根据数量积的定义,向量b在a方向上的投影也可以写成
注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。
5.向量的数量积的几何意义:
数量积a(b等于a的长度与b在a方向上投影bcos(的乘积.
向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分:。此概念也以物体做功为基础给出。是向量b在a的方向上的投影。
6.两个向量的数量积的性质:
设a、b为两个非零向量,则
(1)a(b(a(b=0;
(2)当a与b同向时,a(b=ab;当a与b反向时,a(b=(ab.特别的a(a=a2或
(3)a(b≤ab
(4),其中为非零向量a和b的夹角。
例1.(1)已知向量a,b,满足,a与b的夹角为,则b在a上的投影为______
(2)若,,则a在b方向上投影为_______
例2.已知,,按下列条件求
数学高考复习教案篇6
等差数列
【教学目标】
1.知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.
【设计思路】
1.教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一:创设情境,引入新课
1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二:观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三:举一反三,巩固定义
1.判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四:利用定义,导出通项
1.已知等差数列:8,5,2,…,求第200项?
2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五:应用通项,解决问题
1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?
2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差数列3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六:反馈练习:教材13页练习1
七:归纳总结:
1.一个定义:
等差数列的定义及定义表达式
2.一个公式:
等差数列的通项公式
3.二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
数学高考复习教案篇7
教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这
些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简
称集。
3.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
4.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)
5.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N__或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},„;
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{--3>2},{(x,y)y=x2+1},{直角三角形},„;
强调:描述法表示集合应注意集合的代表元素
{(x,y)y=x2+3x+2}与{yy=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系