六年级数学拓展教案
六年级数学拓展教案篇1
教学内容:
课本第59——60页的内容“统计图的选择“。
教学目标:
1、能读懂条形统计图、折线统计图和扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
2、了解三种统计图的不同特点,能根据需要选择适当的统计图,直观有效地表示数据。
教学重点:
了解三种统计图的不同特点
教学难点:
能针对具体情况正确选择合适的统计图。
教具准备:
课件
教学过程:
一、复习、谈话导入
说出条形统计图、折线统计图和扇形统计图的各自特点。
二、看图分析,回答问题
1、电脑课件呈现下面三幅统计图。
获得信息 ,学生回答
条形:表示数量的多少
折线:表示数量的增减变化
扇形:部分与整体的关系
学生看书
试说,讨论
汇报:从条形统计图中很直接看出29届获得的奖牌最多;从折线统计图中看出金牌数的变化;扇形统计图能看出29届我国奖牌的分布情况。
学生互相说说特点
第(1)小题,表示各种数量占总量的百分之几,应该选择扇形统计图;
第(2)小题,表示各种数量的多少,应该选择条形统计图;
第(3)小题,表示身高的变化情况,应该选择折线统汁图。
奥运会
折线统计图:数量的多少
条形统计图:数量的变化
扇形统计图:部分与整体的关系
第(1)小题,表示各种数量占总量的百分之几,应该选择扇形统计图;
第(2)小题,表示各种数量的多少,应该选择条形统计图;
第(3)小题,表示身高的变化情况,应该选择折线统汁图。
三、巩固升华
完成课后的“练一练”。
四、全课小结
说一说三种统计图的特点和作用
板书设计:
奥运会
折线统计图:数量的多少
条形统计图:数量的变化
扇形统计图:部分与整体的关系
课后反思:
六年级数学拓展教案篇2
教学目标:
1、知识和能力:能在方格纸上按要求将图形按一定的比放大或缩小。能在方格纸上准确建立一个点和一个数对得对应。理解图形按相同的比扩大或缩小的实际意义。
2、过程和方法:结合具体情境,通过观察、操作、思考、交流、展示等活动,体会图形按相同的比扩大或缩小的实际意义。
3、情感态度和价值观:使学生在研究图形的放缩的过程中,初步感受图形的相似。感受学习比例尺的必要性。 欣赏图形的美感。
教学过程:
一、创设情境,激趣导入
出示照片:集体照
师:谢老师想把咱们班的集体照放进想框里,怎样把它放进去呢?(复制粘贴)
师:看着这张照片,有什么感觉?
师:是的,生活中有很多缩小和放大的现象,今天我们就一起来研究图形的放大与缩小(投影出示课题:图形的放缩)!
二、笑脸图大变身
1、初步感受图形的放缩
师:(出示1张贺卡图片)这是一张贺卡,(边说,边操作,得到的三张贺卡)与原来的贺卡相比,怎么样?
生:一样(不一样)。
师:看完之后,你想说点儿什么?你认为哪一张跟原图最像?为什么?(记住和原图比:都是长方形的,是长变了还是宽变了?)
学生小组讨论,发言。
2、深入探究图形的放缩
师:为什么同样的贺卡,在进行了变化之后,有的与原图相像,有的不像呢?接下来我们就来研究这其中的奥秘。(教师出示将方格图照贺卡图片。)
师:请大家认真观察,并结合相关数据思考并分析:谁画得像?为什么?
请代表把你们刚才交流的想法与大家分享。
代表发言,集体指正。
师:看来只有长和宽都按照相同的比来画,才能画得和原图相像。
(说明:教师根据学生的发言适当的板书写出比。)
【设计意图】通过引导学生结合教材中的三幅图研究所画图的长和宽与原图的长和宽有什么关系,让学生体会只有按照相同的比来画,画的图才像。在此过程中,让学生初步感受到比例尺产生的必要性和它的实际意义。让学生在操作活动中领悟图形放缩的规律和奥秘。
三、画一画
师:有了图形放缩的经验,接下来我们要画一画。拿出自己的作业纸,自由设计图案,并将图形进行一次放大或缩小,画完后,在四人小组里面把你自己画的情况、画的方法向组内同学介绍一下,同时告诉大家你所画的这个图长和宽与原图的长和宽的比分别是多少。开始吧。(作业纸上分别有长方形、正方形和三角形)
活动后,教师引导学生进行集体展示、反馈。
【设计意图】大胆放手让学生独立完成画图过程,培养了学生灵活的思维能力,提高了学生创造思维的能力。学生在思考中去操作,在操作后再思考,不但形成了技能,而且对图形的放大与缩小有一个完整的认识。
四、生活中的应用
师:今天我们大家一起研究了图形的放缩,请同学们想一想,你知道日常生活中有哪些地方会应用到图形放缩的知识呢?
【设计意图】让学生感知在生活中,把物体放大或缩小的现象是经常遇到的,学习并运用这些数学知识可以给生活和工作带来很大的方便。
五、神奇的小猫
师:看来同学们是非常留心生活中的数学,现在,老师要和大家一起到游戏中去体会图形的放缩。(出示探究活动)
师:这是一只名叫乐乐的小猫。根据我们学过的数对的知识,你能将表示小猫乐乐轮廓的点的数对正确的填写出来么?(可尝试标出相应的坐标图,便于找出具体的位置)
教师指名补充表示小猫乐乐轮廓的点的数对。
师:小猫家族中还有三只小猫:天天、晶晶和欢欢,(表格中呈现名称)请你根据具体的要求讲表示它们轮廓的点填写在表格中,并观察数对的规律,猜一猜:哪只小猫最像乐乐?之后通过在方格纸上描点、连线来验证自己的猜测。
学生活动、探索。
汇报展示(说一说你的猜测、依据以及验证结果)。
【设计意图】本环节结合具体的活动和实例,贴近学生的生活经验,设计了“神奇的小猫”的探究活动,通过在方格纸上画小猫图,以及讨论哪只小猫长得更像乐乐,使学生充分的感受到比例尺的广泛应用。
六、小结
今天我们在活动和游戏中体验了图形的放缩,下课后就请同学们到生活中继续去体验生活中的放大与缩小。
六年级数学拓展教案篇3
教学方案:
教学环节教学预设
一、问题情境
1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。
师:同学们,看老师手里拿的是什么?
生:钥匙。
师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?
生:密码锁
师:谁知道什么地方或物品上经常用密码锁?
学生可能说出:保险柜、保险箱、旅行箱,等等。
师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁
学生可能会说:
●我在旅行箱上见过三位数的密码锁。
●我在保险柜上见过六位数的密码锁。
●有的保险柜上的密码锁是8个数字。
2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?
学生可能会说:
●不怕丢钥匙。
●能够保密,别人不知道密码开不了,也不能仿制。
……
师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。
板书:数字密码锁
二、探索密码锁
1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。
师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?
学生写密码,然后交流,得出:
用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09
板书:0打头——10个
师:再用1打头,写一写可以组成几个密码?
学生写完后交流,得出:
用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19
板书:1打头——10个
师:想一想,用2打头,可以组成几个密码?
生:10个。
2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?
生:分别可以组成10个
师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?
生:一共可以组成100个。
教师板书:10×10=100(个)
3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?
教师板书:10×10×10=1000(个)
师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。
学生先自己推算,教师巡视,个别指导。
4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?
学生可能有以下说法:
●组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。
如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)
同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)
●用0、1、2、3、4、5、6、7、、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)
●用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)
只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。
5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?
生:他得一个一个地试。
师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。
学生算完后,交流计算结果。
1000×10÷60÷60≈2.7(时)
6.告诉学生六个数字组成的密码有1000000个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有1000000个(板书:1000000个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?
学生汇报计算结果。
1000000×10÷60≈16666(分),
16666÷60≈277(时),
277÷24≈11(天)
师:可见,数字密码锁具有很强的安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。
三、汽车牌照问题
1.让学生自己读书并解答。交流时,说一说是怎样推算的。
师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?
学生试算,教师巡视。
师:谁来说一说你是怎样想的?怎样计算的?
生:由四个数字组成的数码有10×10×10×10=10000(个),在这些数码前面增加一个字母,就可以增加1万个。
四、电话号码问题
提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。
师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。
同桌讨论,试做。
师:谁来说一说你是怎样做的?结果是多少?
学生汇报情况,教师参与。
学生可能会出现以下结果:
●由五个数字组成的数码有10×10×10×10×10=100000(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:10000×10=1000000(个)
●电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=90000(个),变成六位后是10×10×10×10×10×9=900000(个),增加了810000个。
六年级数学拓展教案篇4
教学内容:课本第52页~53页的例2、例3,完成“做一做”的题目和练习十三的第1~4题。
教学目的:使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。
教学重、难点:按比例分配的实际应用。
教学过程:
一、导入
1、情境导入
老师今天向学校图书室借来50本图书准备分给我们班的男、女同学,请同学们说说该怎样分呢?(让学生自由发言,有可能得出男、女同学各分25本,实际上就是我们学过的平均分)
2、复习铺垫:我们班的男生30人、女生20人,人数不同,你说这样平均分合理吗?该怎样分才合理呢?今天我们就来研究象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。(板书:比的应用)
二、新授:
1、教学例1(自己改编):六年级向学校图书室借来图书50本,按3:2分配给男、女学生,男、女生各分得多少本?
对照课本例2的解题过程,让学生先独立解答,然后由各小组讨论,并提出问题来共同解答。
师引导:
(1)题目中要分配什么?是按什么进行分配的?(分配50本图书,男女生按3:2进行分配。)
(2)男女生分得本数的比是3:2,是什么意思?(就是说在50本图书中,男女可分3份,女生可分2份,一共是5份,男生占总数的5分之3,女生占总数的5分之2。)
(3)你能求出两种作物各播种多少公顷吗?怎样求?
引导学生进行自己解题。
2、引导学生再次阅读例2的解题过程,再次质疑
3、练习:做一做第1题。订正时说说解题时先求什么?再求什么?
4、教学例3。
(1)出示例3:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答。并且把书上的例3做完整。
(5)学生试做“做一做”中的第2题。
先让学生说一说奶糖、水果糖、酥糖和占500千克什锦糖的几分之几?
三、巩固练习。
1.做一做第3题。
2.练习十三的第1、3题。
四、作业。练习十三第2、4题。
六年级数学拓展教案篇5
本册教学目标
一板书设计:略
二教后反思:
1、(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)
3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、练习:练习完成“做一做”第2题。
5、教学例2
(1)出示×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习
1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
三、作业
练习二第1、2、4题。个人修改
六年级数学拓展教案篇6
鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:
一、关注每位孩子的成长是成功的前提
鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。
二、关注课堂的互动、生成是取得良好效果的基础
课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。
三、关注数学思想的传承是达成目标的保障
解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。
本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。
六年级数学拓展教案篇7
教学内容:
人教版小学数学教材六年级下册第96~97页例1及相关练习。
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)
喜欢的项目
乒乓球
足球
跳绳
踢毽
其他
人数
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。