五年级数学的教案怎么写
五年级数学的教案怎么写篇1
教学目标
1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养学生大胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270(50+40).
想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:
相遇时间=路程速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于求相遇时间应用题还有什么问题?
4.教师提问
(1)要求相遇时间题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,
第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这
列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
五年级数学的教案怎么写篇2
【教学内容】
人教版小学数学五年级下册P83-84页例1、例2;P85页练习二十一第1-3题。
【教学目标】
1、知识与能力:
(1)结合图形,使学生理解旋转的三要素:旋转中心、旋转方向、旋转角度。
(2)借助线段、三角形旋转,探索图形旋转的特征。
2、过程与方法:
(1)经历对具体图形旋转过程的观察和抽象,认识旋转的本质,发展概括能力和空间想象能力。
(2)培养学生动手操作能力,提高空间想象能力。
情感、态度与价值观:
通过观赏生活中的旋转现象,激发学生学习数学的兴趣,体验数学的价值与魅力。
【教学重点难点】
重点:通过多种学习活动沟通联系,理解旋转含义,感悟特性及性质。
难点:用数学语言描述物体的旋转过程及理解三角形旋转的特征。
【教学教具准备】
1、课件、投影仪、三角尺。
2、活动材料单,方格纸,(每人一份)。
【教学过程】
一、谈话导入,揭示课题:
师:同学们,健身强体已成为一种生活时尚,广场上、公园里无时无刻都会看到人们健身运动的身影,相信同学们也都是健身运动小达人。这节课我们就从运动开始。(板书:运动)请看老师在干什么?从数学的角度观察,在数学上叫什么?
生:平移(板书:平移)
师:再看老师这个动作叫什么?
生:旋转(板书:旋转)
师;这是物体的平移和旋转,今天这节课我们来研究图形的运动—旋转。(板书:图形的--)(课题:图形的运动—旋转)
二、初步探究,认识旋转要素
师:请看,这是一个点(出示)。这个点在这里不停的旋转是一个点,如果这个点想同一个方向平移到另一个点,会形成一个什么图形?你来说:(手势,A到B)
生:线段。
师:请看,点A向同一个方向平移到点B,(边演示边说),形成一条线段AB,(板书线段)
师:A——B线段AB可以?
生:平移。
师:也可以?
生:旋转。
师:这节课我们不研究线段的平移,只研究线段的旋转。
师:线段AB绕点A按顺时针方向旋转了90°,AB上的C点,又是怎样旋转的呢?你来说?
生回答
师:线段AB上的C点也绕点O按顺时针方向旋转了90°,请看,D点呢?你来说?
小结:也就是说,线段AB的每一点都绕点A按顺时针方向旋转了90°。再看,旋转前后B点和B’到A点的距离改变了吗?
师:线段AB上的每一点旋转前后到A点的距离都没有发生改变。
总结:
师:同学们请看:线段AB上的每一个点都绕A点按顺时针方向旋转了90°,并且每一个点旋转前后到A点的距离都没有发生改变,像这样一条线段绕着一个点旋转的现象,钟表上也有,请同学们拿出活动材料单
自主完成,开始。学生展示
师:旋转角度是旋转的三要素,并且知道线段上的每一点旋转前后到旋转中心的距离都没有发生改变。
三、深化研究,旋转图形
师:如果是几条线段组成的图形,旋转后又会出现什么情况呢?线段OA、OB、AB组成的什么图形?
生:三角形。
师:三角形△AOB又是怎样旋转的呢?请看,谁来读要求?生读要求。
师:请同学们拿出材料单
和三角尺按要求转一转,并完成下面的要求。以小组为单位,开始。师巡视指导。学生汇报。
小结:三角形绕O点顺时针方向旋转了90度。旋转前后三角形的中心位置,大小,形状都不变,每个点到中心的距离不变。只有三角形的位置变了。
师:(演示180°)请看△AOB又是怎样旋转的呢?
生答。
师:如果△AOB绕点O顺时针方向旋转360°。会出现什么情况?
生:重合。
师:当△AOB绕点O按顺时针方向旋转360°就会旋转到原来的位置。
四、自主练习,应用拓展数学书第85页第1.2.3题。
总结:
师:同学们请看,今天我们学习了图形的运动--旋转,知道了旋转的三要素:中心、方向、角度。还知道了旋转前后的图形旋转中心的位置不变,图形的大小、形状不变,每个点到旋转中心的距离不变,只是三角形的位置变了。生活中人们利用旋转的特点创造了许多美丽的图案,(请看)(边演示边讲)旋转为我们的生活带来了美,带来了快乐,也带来了幸福。
最后老师送给同学们一句话:当你为生活的山重水复而愁眉苦脸时,不妨旋转一个角度看世界,相信你会收获一个柳暗花明的心情。
下课!同学们再见。
五年级数学的教案怎么写篇3
教学目标:
1、通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
2、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。
教学重点:
通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
教学难点:
通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
教具准备:
长方体、正方体的模型,纸盒、剪刀、尺子。
教学过程:
一、复习
说一说:复习长方体、正方体的特征。
相同点:(1)六个面(2)12条棱(3)8个顶点
不同点:六个面的面积。
二、动手操作,知道长方体、正方体的展开图。
1、剪一剪:
引导学生通过把1个正方体盒子沿着棱剪开图。
2、说一说:
正方体展开图是怎样的?
3、将长方体盒子沿棱剪开,试试看。
4、比一比。学生回顾:
长方体和正方体的基本特征{相同点不同点
学生动手剪开正方体纸盒。
观察,得到了一个怎么样的展开图。
小组中进行交流。说说自己剪的方法,比一比展开图是否相同?
引导学生剪开长方体盒子,观察长方体的展开图。
引导学生对长方体盒子和正方体盒子进行比较。
通过复习巩固对长方体、正方体的认识。引入认识展开长方体、正方体的折叠。
通过剪一剪等实践活动,把长方体、正方体盒子剪开得到平面图形的活动,引导学生直观认识长方体和正方体的展开图。
教师指导与教学过程学生学习活动过程设计意图
相同点:有六个面。
不同点:六个面的大小不同。
5、做一做
引导学生观察图形正方体?长方体?
①围成正方体所要的条件?
②用手中的材料尝试折叠。
③独立想一想哪些图形符合要求。
④组织学生进行交流。
三、练一练
1、教科书第17页“练一练”第1题。
引导学生:看展开图。
在操作中进行验证。
先让学生看展开图进行思考,并把结果写下来,然后再利用附页中的图试一试。
思考:与1、2、3号面相对的的是几号面?
2、教科书第17页“练一练”第2题。
先让学生按展开图说说哪两个面是相对的面,再联系长方体说说展开图中的各个长方形对应的是长方体中的哪个面。
3、动手折一折,试一试。
通过做一做,引导学生体会展开图形与长方体、正方体的联系。
通过折叠正方体、长方体的展开图,发展学生的空间观念。
四、全课小结
跟小组内的同学谈谈你这节课的收获在什么?
板书设计:
展开与折叠
面―――体
五年级数学的教案怎么写篇4
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知[课件1]
1,提问:A,7/8是什么数它表示什么
B,7÷8是什么运算它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90.例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系.)
板书:1÷3=1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示也就是说整数除法的商也可以用谁来表示
2,教学P90.例3:把3块饼平均分给4个孩子,每个孩子分得多少块[课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢
板书:3÷4=3/4
(2)操作检验(分组进行)
①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
②反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的3/4,也就是3/4块.)
B,比较这两种分法,哪种简便些
※把5块饼平均分给8个孩子,每个孩子分得多少说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书:被除数÷除数=除数/被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书:a÷b=b/a(b≠0)
D,b为什么不能等于0
4,看书P91深化.
反馈:说一说分数和除法之间和什么联系又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习[课件5]
1,用分数表示下面各式的商.
5÷824÷2516÷497÷139÷9c÷d
2,口算.
7÷13=()÷9=1/2=()÷()8/13=()÷()
3,7/10表示把单位"1"平均分成()份,表示这样的()份的数.1÷21表示两个数(),还可以表示把()平均分成()份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93.1,2,3
板书设计:分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米)例3:3÷4=3/4
被除数÷除数=除数/被除数
a÷b=b/a(b≠0)
分数是一个数,除法是一种运算
五年级数学的教案怎么写篇5
教学目标
1、理解分数、小数互相转化的必要性,掌握分数和小数互化计算的方法。
2、能正确地将简单的分数化为有限小数,并能在解决实际问题时灵活运用。
3、通过对规律的猜想、验证和总结建立事物相互联系相互转化的辩证唯物主义观点。
教学过程:
(一)创设情境,自主探索
1、在比较中认识互化的必要性
师(课件出示课本情境图):请观察图表,说一说图的意义。
(在学生说的过程中,板书:林林0.4(小时);明明1/4(小时))
师:请同学们比一比,谁用的时间多一些?
(在比较时,可以先让学生估计,然后再精确比较)
生1:我们小组是把小时化成分钟来比较的。小数化成分数来比较大小的。0.4小时是24分钟,1/4小时是15分钟,所以林林用的时间多一些。
生2:我们小组用画图的方法来比较的。我画了10个同样的小格,0.4涂4格,而只涂2格半,所以林林用的时间多一些。
生3:我们小组也是用画图的方法来比较的。我画了100个同样的小格,0.4能涂40格,而只涂25格,所以林林用的时间多一些。
生4:我们小组把小数化成分数的方法来比较的。0.4是4个1/10,也就是4/10,约分后是2/5,大于1/4,所以林林用的时间多一些。
生5:我们小组把分数化成小数的方法来比较的。1/4=1÷4=0.25,0.4>0.25,所以林林用的时间多一些。
师:你们最喜欢哪种方案,为什么?
生1:我喜欢分数化成小数那个小组的方案。因为画图太麻烦了,而分数化成小数,直接用分数的分子除以分母就可以了。
生2:我喜欢小数化成分数的那个小组的方案。分数化小数有的时候除不尽很麻烦,画图也很麻烦,比较时间能化成分钟来比,如果其它单位的还得又一种化法。所以我喜欢把小数化成分数的方案。
生3:把小数化成分数再比较大小,分母不同的时候还得通分,也很麻烦,还不如具体问题具体分析。
......
师(小结):同学们回答的都很好,在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。
2、探索分数化小数
师:谁来说一说第5小组是用什么方法把分数化成小数的?
生:用分子除以分母的方法。
师:你是怎么想到用分子除以分母的方法化成小数的?
生:因为分数的分子相当于被除数,而分母相当于除数。
师:请你把71页“试一试”第2题这几个分数化成小数。
(学生独立解答,教师巡视指导。)
3、探索小数化分数的基本方法
师:老师问一下第4小组的同学,你们是用什么方法把小数化成分数的?
生:我们是根据小数的意义把小数化成分数的。
师:能具体的说一说吗?
生:0.4是4个十分之一,也就是十分之四,约分后是五分之二。
师:那0.04,0.004呢?
生:0.04是4个百分之一,也就是百分之四,约分后是二十五分之一;0.004是4个千分之一,也就是千分之四,约分后是二百五十分之一。
师:说的真不错,化成分数后,能约分的要约分,一直约分成最简分数。
师:请观察化简前的分数,分母与小数有什么关系?有没有规律?
(学生分小组讨论,汇报。)
生1:小数的位数与分母1后面的零的个数一样多。
生2:原来有几位小数,就在1后面写几个零作分母。
师:请再观察分子与小数有什么关系?
生:原来的小数去掉小数点后的数作分子,
师:请按照找出来的规律,把课本第71页“试一试”的第1题做到练习本上。
(二)练习提高
1、课本第72页练一练第1题,分数化小数。
2、判断是否正确,如果不对,请改正。
3、数学游戏:你说我答:同桌之间一个说分数一个说小数,互相交换着说。
(让学生熟记一些常用的分数与小数互化的结果)
4、比较各组数的大小(主要是对分数和小数的互化进行练习)。
5、在直线上面的括号里填上适当的分数,在下面的括号里填上适当的小数。
(三)小结延伸
师:本节课的学习你有哪些收获?
(四)实践活动
在生活中寻找用分数或小数表示的信息。
五、教学反思
五年级数学的教案怎么写篇6
教学目标:
1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。
2、培养分析、比较及综合概括能力。
3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。
教学重点:
掌握3的倍数的特征,正确判断一个数是否是3的倍数。
教学难点:
探索3的倍数的特征。
教学过程:
一、【创设情景,明确目标】(3分钟)
(一)创设情景,反馈预习
1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?
P:16、24、85、102、138、170、
2 的倍数:16、24、102、138、170
5的倍数:85、170
即是2的倍数又是5的倍数:170
师:说一说,你是怎么想的?
生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.
2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
3、教师板书课题:3的倍数的特征。
(二)明确目标,引领方法
1、出示学习目标(见学案),生自读目标。
2、同伴说说自己的理解,谈谈如何实现目标。
【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。
二、【自主学习,同伴合作】(15分钟)
(一)自主学习,自我感知
1、小棒游戏,探究规律
师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
2、小组合作探究
(1)用3根小棒摆一个数,这些都是3的倍数吗?
师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家看一下导学案的合作要求
①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
(2)用4根再摆出一些数,这些都是3的倍数吗?
(3)用6根再摆出一些数,这些都是3的倍数吗?
(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?
预设
第一组:用3根小棒摆:2、12、102,都分别是3的倍数。
第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。
第三族,用6根小棒摆:都是3的倍数。
问题:你发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师评价:关键要看小棒的根数,了不起的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
(5)真的是这么回事吗?以9为例摆摆看。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。
3、总结提升
师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?
师:小组内交流一下。
小组活动。
师:谁来说说?
生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。
生2:各个数位上数的和是3的倍数,这个数就是3的倍数。
生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。
师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。
4、探究原因,区别理解
(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
研究16
师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)
但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)
用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)
看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。
通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。
(2)问:为什么3的倍数特征要看各个数位相加的和呢?
举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?
一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,
138分一分,试一试,看看是不是3的倍数
一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。
(2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。
P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)
三、【巩固拓展,形成能力】(10分钟)
(一)巩固训练,夯实基础
1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、圈出下面是3的倍数的数:42、78、111、165、655、5988
3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?
(预设:生1:1。
师:可以吗?还有其他答案吗?
生2:1,4,7都可以。
师:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。
师:恭喜你,三种可能都被你们猜中了!
师:如果它既是2的倍数,又是3的倍数呢?
生:24。
师:为什么只有24可以呢?
生:因为只有24既是2的倍数,又是3的倍数。)
(二)拓展训练,灵活创新
以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)
13689362754、123456789
老师:如果用各个数位之和是3的倍数,比较麻烦。
但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……
后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。
教师巡视,个别辅导。
(二)同伴讨论,互助共进
完成学案中“同伴合作,互助共进”内容。
重点交流学生所举的例子。
教师巡视,个别辅导。
【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。
四、【师生共学,交流分享】(5分钟)
(一)小组展示,彰显风采
指名小组进行汇报。
(二)师生完善,共同提高
1、学生纠正、补充、质疑
2、教师精讲、点拨、评价
在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。
【设计意图】通过教师的点拨完善学生对比的认识。
五、【巩固拓展,形成能力】(10分钟)
(一)巩固训练,夯实基础
先由学生自主完成学案中相应的内容,再同桌交流,完善答案。
1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、看一看哪些是3的倍数:42、78、111、165、655、5988
原来判断是用除法,现在用加法。改革了
3、不用计算,能快速算出来那个式子有余数吗?
802、3;342、3
4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数
5、下面都是吗?789、345、654
都是,有什么特点?相邻、连续三个自然数。
是不是所有都是呢?举例:123.为什么呢?
654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。
6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。
五年级数学的教案怎么写篇7
教学内容
《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。
教学思路
小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。
设计理念
1、数学教学活动要关注学生的个人知识和直接经验
新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。
2、注重学生自主性和个性化的学习
引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。
教学目标
1、经历除法估算方法的探索过程,理解并掌握估算的方法。
2、能灵活运用估算方法解决实际的问题。
3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。
教学过程
一、秋游场景引入,调动学生学习兴趣。
上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。
二、创设问题情景,激励学生自行探究。
1、关于所需车辆的计算:
师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”
(1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?
(2)学生自己思考解答后交流。
师:请同学来说说你的结果。(交流情况)
生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。
(240)(40)
生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。
(200)(40)
生3:我认为是不够的,老师还没有算在里面呢。
生4:老师,我用小数做的行吗?
师:当然可以了。你课外知识真丰富!请你说说看。
生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。
生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。
生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。
师:是啊,多出来的人怎么办呢?不去了吗?
师:我看,问题主要是在生1和生2的两种解法中235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?
生7:只要省略最高位后面的尾数,保留整十数。
师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?
生齐:生1说的那种。
生2:我现在想想应该是不够的,刚才没有仔细考虑。
师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。
生8:老师,那230也接近235的,为什么要取240呢?
师:谁能回答这个问题?
生9:因为240÷40是整数6,计算方便,算得快。
师:为什么会这么快?
生9:因为我想乘法口诀:四六二十四
师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!
师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。
2.关于缆车票价的估算(出示缆车图)
(1)理解价格表
师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)
生10:大人坐缆车上山要20元,上山、下山一起要30元。
生11:大人光上山不下山是20元。儿童的票价是大人的一半。
师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?
生12:(口答)30÷2=15(元)
师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?
(学生小组讨论后交流)
生13:我们小组认为老师要付15×58≈1200(元)
(20)(60)
生14:我们小组认为老师只要付15×58≈900(元)
(60)
师:怎么一下就相差了300元?该听谁的呢?
生15:我们小组是列竖式计算的,其实只要15×58=870(元)
师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?
(学生纷纷猜测)
生16:老师,我想您付的钱应该比870元少。
师:为什么这么说?
生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。
师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。
(生恍然,纷纷点头。)
师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?
列式:775÷58≈
生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58≈13(元)
三、提供数据信息,鼓励学生自选解题。
在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。
反思:
这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:
1、生活即教育
“生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。
2、估算与生活
估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。