八年级下册教案数学教案
八年级下册教案数学教案篇1
一、教学目标
(一)知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程
教学环节:
活动1:复习引入
看谁算得快:用简便方法计算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2、67×132+25×2、67+7×2、67=;
(3)992–1=。
设计意图:
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉。引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶。
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题
P165的探究(略);
2、看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知
看谁算得准:
计算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根据上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知
比较以下两种运算的联系与区别:
a(a+1)(a-1)=a3-a
a3-a=a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
八年级下册教案数学教案篇2
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移
2.平移的性质:
⑴经过平移,对应点所连的线段平行且相等;
⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;
⑵需要平移的方向;
⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:
⑴找出关键点;⑵作出这些点平移后的对应点;
⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转
2.旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。
八年级下册教案数学教案篇3
第二章一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性质
①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变
②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变
③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变
3、不等式的解集
①能使不等式成立的未知数的值,叫做不等式的解
②一个含有不等式所有的解,组成这个不等式的解集
③求不等式解集的过程叫做解不等式
4、一元一次不等式
①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的次数是1
5、一元一次不等式与一次函数
6、一元一次不等式组
①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组
②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组
八年级下册教案数学教案篇4
一、分解因式
1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
2、因式分解与整式乘法是互逆关系。因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘。
二、提公共因式法
1、如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。这种分解因式的方法叫做提公因式法。如:ab+ac=a(b+c)
2、概念内涵:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,即:ma+mb—mc=m(a+b—c)
3、易错点点评:
(1)注意项的符号与幂指数是否搞错;
(2)公因式是否提“干净”;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。
三、运用公式法
1、如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
2、主要公式:
4、运用公式法:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;
③二项是异号。
(2)完全平方公式:
①应是三项式;
②其中两项同号,且各为一整式的平方;
③还有一项可正可负,且它是前两项幂的底数乘积的2倍。
5、因式分解的思路与解题步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
八年级下册教案数学教案篇5
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量
2、会求一组数据的极差
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差
2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析
教材P151引例的意图
(1)、主要目的是用来引入极差概念的
(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量
(3)、交待了求一组数据极差的方法。
四、课堂引入:
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。
六、随堂练习:
1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .
2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .
3、下列几个常见统计量中能够反映一组数据波动范围的是( )
A.平均数 B.中位数 C.众数 D.极差
4、一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
答案:1. 497、3850 2. 4 3. D 4.B
七、课后练习:
1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )
A. 0.4 B.16 C.0.2 D.无法确定
在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )
A. 87 B. 83 C. 85 D无法确定
3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。
4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。
5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)
90、95、87、92、63、54、82、76、55、100、45、80
计算这组数据的极差,这个极差说明什么问题?
将数据适当分组,做出频率分布表和频数分布直方图。
答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成绩优劣差距较大。(2)略
八年级下册教案数学教案篇6
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
八年级下册教案数学教案篇7
学习目标:
(1)了解运用公式法分解因式的意义;
(2)会用完全平方公式进行因式分解;
(3)清楚优先提取公因式,然后考虑用公式
中考考点:正向、逆向运用公式,特别是配方法是必考点。
预习作业:
1. 完全平方公式字母表示: .
2、形如或的式子称为
3. 结构特征:项数、次数、系数、符号
填空:
(1)(a+b)(a-b) = ;
(2)(a+b)2= ;
(3)(a–b)2= ;
根据上面式子填空:
(1)a2–b2= ;
(2)a2–2ab+b2= ;
(3)a2+2ab+b2= ;
结 论:形如a2+2ab+b2 与a2–2ab+b2的式子称为完全平方式.
a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2
完全平方公式特点:首平方,尾平方,积的2倍在中央,符号看前方。
例1: 把下列各式因式分解:
(1)x2–4x+4 (2)9a2+6ab+b2
(3)m2– (4)
例2、将下列各式因式分解:
(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy
注:优先提取公因式,然后考虑用公式
例3: 分解因式
(1) (2)
(3) (4)
点拨:把 分解因式时:
1、如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数P的符号相同
2、如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数P的符号相同
3、对于分解的两个因数,还要看它们的和是不是等于一次项的系数P
变式练习:
(1) (2)
(3)
借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,
叫做十字相乘法
口诀:首尾拆,交叉乘,凑中间。
拓展训练:
若把代数式化为的形式,其中m,k为常数,求m+k的值
已知,求x,y的值
当x为何值时,多项式取得最小值,其最小值为多少?
回顾与思考
学习目标:
(1)提高因式分解的基本运算技能
(2)能熟练进行因式分解方法的综合运用.
学习准备:
1、把一个多项式化成 的形式,叫做把这个多项式分解因式。
要弄清楚分解因式的概念,应把握如下特点:
(1)结果一定是 的形式;
(2)每个因式都是 ;
(3)各因式一定要分解到 为止。
2、分解因式与 是互逆关系。
3、分解因式常用的方法有:
(1)提公因式法:
(2)应用公式法:①平方差公式: ②完全平方公式:
(3)分组分解法:am+an+bm+bn=
(4)十字相乘法:=
4、分解因式步骤:
(1)首先考虑提取 ,然后再考虑套公式;
(2)对于二次三项式联想到平方差公式因式分解;
(3)对于二次三项式联想到完全平方公式,若不行再考虑十字相乘法分解因式;
(4)超过三项的多项式考虑分组分解;
(5)分解完毕不要大意,检查是否分解彻底。
辨析题:
1、下列哪些式子的变形是因式分解?
(1)x2–4y2=(x+2y)(x–2y)
(3)4m2–6mn+9n2 =2m(2m–3n)+9n2
(4)m2+6mn+9n2=(m+3n)2
2、把下列各式分解因式:
(1)7x2–63 (2)(x+y)2–14(x+y)+49
(3) (4)(a2+4)2–16a2
(5) (6)
(7) (8)
想一想
计算:
1、32004–32003 2、(–2)101+(–2)100
3、已知 ,求的值.
例1: 把下列各式因式分解(分组后能提公因式)
(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx
(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m
点拨:
1、用分组分解法时,一定要想想分组后能否继续进行,完成因式分解,由此合理选择分组的方法
2、运算律(如加法交换律、分配律)在因式分解中起着重要的作用