写方案网 > 教学教案 > 数学教案 >

高二数学设计教案

时间: 新华 数学教案

高二数学设计教案篇1

1.本节课的重点是了解程序框图的含义,理解程序框图的作用,掌握各种程序框和流程线的画法与功能,理解程序框图中的顺序结构,会用顺序结构表示算法.难点是理解程序框图的作用及用顺序结构表示算法.

2.本节课要重点掌握的规律方法

(1)掌握画程序框图的几点注意事项,见讲1;

(2)掌握应用顺序结构表示算法的步骤,见讲2.

3.本节课的易错点

对程序框图的理解有误致错,如讲1.

课下能力提升(二)

[学业水平达标练]

题组1程序框图

1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()

A.连接点B.判断框C.流程线D.处理框

解析:选C流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A,B,D都不对.故选C.

2.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为()

A.abcdB.dcabC.bacdD.cbad

答案:D

3.如果输入n=2,那么执行如下算法的结果是()

第一步,输入n.

第二步,n=n+1.

第三步,n=n+2.

第四步,输出n.

A.输出3B.输出4

C.输出5D.程序出错

答案:C

题组2顺序结构

4.如图所示的程序框图表示的算法意义是()

A.边长为3,4,5的直角三角形面积

B.边长为3,4,5的直角三角形内切圆面积

C.边长为3,4,5的直角三角形外接圆面积

D.以3,4,5为弦的圆面积

解析:选B由直角三角形内切圆半径r=a+b-c2,知选B.

第4题图第5题图

5.(2016•东营高一检测)给出如图所示的程序框图:

若输出的结果为2,则①处的执行框内应填的是()

A.x=2B.b=2

C.x=1D.a=5

解析:选C∵b=2,∴2=a-3,即a=5.∴2x+3=5时,得x=1.

6.写出如图所示程序框图的运行结果:S=________.

解析:S=log24+42=18.

答案:18

7.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.

解:算法如下:第一步,令r=10.第二步,计算C=2πr.第三步,输出C.

程序框图如图:

8.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.

解:自然语言算法如下:

第一步,求f(3)的值.

第二步,求f(-5)的值.

第三步,将前两步的结果相加,存入y.

第四步,输出y.

程序框图:

[能力提升综合练]

1.程序框图符号“”可用于()

A.输出a=10B.赋值a=10

C.判断a=10D.输入a=1

解析:选B图形符号“”是处理框,它的功能是赋值、计算,不是输出、判断和输入,故选B.

2.(2016•广州高一检测)如图程序框图的运行结果是()

A.52B.32

C.-32D.-1

解析:选C因为a=2,b=4,所以S=ab-ba=24-42=-32,故选C.

3.(2016•广州高一检测)如图是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()

A.9B.10

C.11D.12

解析:选C由题意知该算法是计算a1+a22的值.

∴3+a22=7,得a2=11,故选C.

4.(2016•佛山高一检测)阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是()

A.x=1B.x=2

C.b=1D.b=2

解析:选B若b=6,则a=7,∴x3-1=7,∴x=2.

5.根据如图所示的程序框图所表示的算法,输出的结果是________.

解析:该算法的第1步分别将1,2,3赋值给X,Y,Z,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.

答案:2

6.计算图甲中空白部分面积的一个程序框图如图乙,则①中应填________.

图甲图乙

解析:图甲空白部分的面积为a2-π16a2,故图乙①中应填S=a2-π16a2.

答案:S=a2-π16a2

7.在如图所示的程序框图中,当输入的x的值为0和4时,输出的值相等,根据该图和各小题的条件回答问题.

(1)该程序框图解决的是一个什么问题?

(2)当输入的x的值为3时,求输出的f(x)的值.

(3)要想使输出的值,求输入的x的值.

解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.

(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).

因为f(0)=0,f(4)=-16+4m,

所以-16+4m=0,

所以m=4.

所以f(x)=-x2+4x.

则f(3)=-32+4×3=3,

所以当输入的x的值为3时,输出的f(x)的值为3.

(3)因为f(x)=-x2+4x=-(x-2)2+4,

所以当x=2时,f(x)max=4,

所以要想使输出的值,输入的x的值应为2.

8.如图是为解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:

(1)图框①中x=2的含义是什么?

(2)图框②中y1=ax+b的含义是什么?

(3)图框④中y2=ax+b的含义是什么?

(4)该程序框图解决的是怎样的问题?

(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.

解:(1)图框①中x=2表示把2赋值给变量x.

(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.

(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax+b的值,并把这个值赋给y2.

(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.

(5)y1=3,即2a+b=3.⑤

y2=-2,即-3a+b=-2.⑥

由⑤⑥,得a=1,b=1,

所以f(x)=x+1.

高二数学设计教案篇2

教材分析教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的.思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

高二数学设计教案篇3

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为R

2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

课后小结

归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业:习题1—4第3、4、5、6、7题.

高二数学设计教案篇4

教学目标

1.理解的概念,掌握的通项公式,并能运用公式解决简单的问题.

(1)正确理解的定义,了解公比的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等比中项的概念;

(2)正确认识使用的表示法,能灵活运用通项公式求的首项、公比、项数及指定的项;

(3)通过通项公式认识的性质,能解决某些实际问题.

2.通过对的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

教学建议

教材分析

(1)知识结构

是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

(2)重点、难点分析

教学重点是的定义和对通项公式的认识与应用,教学难点在于通项公式的推导和运用.

①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

教学建议

(1)建议本节课分两课时,一节课为的概念,一节课为通项公式的应用.

(2)概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到的定义.也可将几个等差数列和几个混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括的定义.

(3)根据定义让学生分析的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

(4)对比等差数列的表示法,由学生归纳的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

(5)由于有了等差数列的研究经验,的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

教学设计示例

课题:的概念

教学目标

1.通过教学使学生理解的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为).

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——.(这里播放变形虫分裂的多媒体软件的第一步)

(板书)

1.的定义(板书)

根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出的定义,标注出重点词语.

请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是,让学生讨论后得出结论:当时,数列既是等差又是,当时,它只是等差数列,而不是.教师追问理由,引出对的认识:

2.对定义的认识(板书)

(1)的首项不为0;

(2)的每一项都不为0,即;

问题:一个数列各项均不为0是这个数列为的什么条件?

(3)公比不为0.

用数学式子表示的定义.

是①.在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是?为什么不能?

式子给出了数列第项与第项的数量关系,但能否确定一个?(不能)确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.的通项公式(板书)

问题:用和表示第项.

①不完全归纳法

.

②叠乘法

,…,,这个式子相乘得,所以.

(板书)(1)的通项公式

得出通项公式后,让学生思考如何认识通项公式.

(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

四、作业(略)

五、板书设计

1.等比数列的定义

2.对定义的认识

3.等比数列的通项公式

(1)公式

(2)对公式的认识

探究活动

将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米.

参考答案:

30次后,厚度为,这个厚度超过了世界的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(用对数算也行).

高二数学设计教案篇5

1.本节课的重点是理解算法的概念,体会算法的思想,难点是掌握简单问题算法的表述.

2.本节课要重点掌握的规律方法

(1)掌握算法的特征,见讲1;

(2)掌握设计算法的一般步骤,见讲2;

(3)会设计实际问题的算法,见讲3.

3.本节课的易错点

(1)混淆算法的特征,如讲1.

(2)算法语言不规范致误,如讲3.

课下能力提升(一)

[学业水平达标练]

题组1算法的含义及特征

1.下列关于算法的说法错误的是()

A.一个算法的步骤是可逆的

B.描述算法可以有不同的方式

C.设计算法要本着简单方便的原则

D.一个算法不可以无止境地运算下去

解析:选A由算法定义可知B、C、D对,A错.

2.下列语句表达的是算法的有()

①拨本地电话的过程为:1提起话筒;2拨号;3等通话信号;4开始通话或挂机;5结束通话;

②利用公式V=Sh计算底面积为3,高为4的三棱柱的体积;

③x2-2x-3=0;

④求所有能被3整除的正数,即3,6,9,12,….

A.①②B.①②③

C.①②④D.①②③④

解析:选A算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.①②都各表达了一种算法;③只是一个纯数学问题,不是一个明确步骤;④的步骤是无穷的,与算法的有穷性矛盾.

3.下列各式中S的值不可以用算法求解的是()

A.S=1+2+3+4

B.S=12+22+32+…+1002

C.S=1+12+…+110000

D.S=1+2+3+4+…

解析:选DD中的求和不符合算法步骤的有限性,所以它不可以用算法求解,故选D.

题组2算法设计

4.给出下面一个算法:

第一步,给出三个数x,y,z.

第二步,计算M=x+y+z.

第三步,计算N=13M.

第四步,得出每次计算结果.

则上述算法是()

A.求和B.求余数

C.求平均数D.先求和再求平均数

解析:选D由算法过程知,M为三数之和,N为这三数的平均数.

5.(2016•东营高一检测)一个算法步骤如下:

S1,S取值0,i取值1;

S2,如果i≤10,则执行S3,否则执行S6;

S3,计算S+i并将结果代替S;

S4,用i+2的值代替i;

S5,转去执行S2;

S6,输出S.

运行以上步骤后输出的结果S=()

A.16B.25

C.36D.以上均不对

解析:选B由以上计算可知:S=1+3+5+7+9=25,答案为B.

6.给出下面的算法,它解决的是()

第一步,输入x.

第二步,如果x<0,则y=x2;否则执行下一步.

第三步,如果x=0,则y=2;否则y=-x2.

第四步,输出y.

A.求函数y=x2x<0,-x2x≥0的函数值

B.求函数y=x2x<0,2x=0,-x2x>0的函数值

C.求函数y=x2x>0,2x=0,-x2x<0的函数值

D.以上都不正确

解析:选B由算法知,当x<0时,y=x2;当x=0时,y=2;当x>0时,y=-x2.故选B.

7.试设计一个判断圆(x-a)2+(y-b)2=r2和直线Ax+By+C=0位置关系的算法.

解:算法步骤如下:

第一步,输入圆心的坐标(a,b)、半径r和直线方程的系数A、B、C.

第二步,计算z1=Aa+Bb+C.

第三步,计算z2=A2+B2.

第四步,计算d=z1z2.

第五步,如果d>r,则输出“相离”;如果d=r,则输出“相切”;如果d

8.某商场举办优惠促销活动.若购物金额在800元以上(不含800元),打7折;若购物金额在400元以上(不含400元)800元以下(含800元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x,输出实际交款额y.

解:算法步骤如下:

第一步,输入购物金额x(x>0).

第二步,判断“x>800”是否成立,若是,则y=0.7x,转第四步;否则,执行第三步.

第三步,判断“x>400”是否成立,若是,则y=0.8x;否则,y=x.

第四步,输出y,结束算法.

题组3算法的实际应用

9.国际奥委会宣布2020年夏季奥运会主办城市为日本的东京.据《中国体育报》报道:对参与竞选的5个夏季奥林匹克运动会申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票数超过总票数的一半,那么该城市将获得举办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后进行第二轮投票;如果第二轮投票仍没选出主办城市,将进行第三轮投票,如此重复投票,直到选出一个主办城市为止,写出投票过程的算法.

解:算法如下:

第一步,投票.

第二步,统计票数,如果一个城市得票数超过总票数的一半,那么该城市就获得主办权,否则淘汰得票数最少的城市并转第一步.

第三步,宣布主办城市.

[能力提升综合练]

1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用()

A.13分钟B.14分钟

C.15分钟D.23分钟

解析:选C①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.

2.在用二分法求方程零点的算法中,下列说法正确的是()

A.这个算法可以求方程所有的零点

B.这个算法可以求任何方程的零点

C.这个算法能求方程所有的近似零点

D.这个算法并不一定能求方程所有的近似零点

解析:选D二分法求方程零点的算法中,仅能求方程的一些特殊的近似零点(满足函数零点存在性定理的条件),故D正确.

3.(2016•青岛质检)结合下面的算法:

第一步,输入x.

第二步,判断x是否小于0,若是,则输出x+2,否则执行第三步.

第三步,输出x-1.

当输入的x的值为-1,0,1时,输出的结果分别为()

A.-1,0,1B.-1,1,0

C.1,-1,0D.0,-1,1

解析:选C根据x值与0的关系选择执行不同的步骤.

4.有如下算法:

第一步,输入不小于2的正整数n.

第二步,判断n是否为2.若n=2,则n满足条件;若n>2,则执行第三步.

第三步,依次从2到n-1检验能不能整除n,若不能整除,则n满足条件.

则上述算法满足条件的n是()

A.质数B.奇数

C.偶数D.合数

解析:选A根据质数、奇数、偶数、合数的定义可知,满足条件的n是质数.

5.(2016•济南检测)输入一个x值,利用y=x-1求函数值的算法如下,请将所缺部分补充完整:

第一步:输入x;

第二步:________;

第三步:当x<1时,计算y=1-x;

第四步:输出y.

解析:以x-1与0的大小关系为分类准则知第二步应填当x≥1时,计算y=x-1.

答案:当x≥1时,计算y=x-1

6.已知一个算法如下:

第一步,令m=a.

第二步,如果b<m,则m=b.<p="">

第三步,如果c<m,则m=c.<p="">

第四步,输出m.

如果a=3,b=6,c=2,则执行这个算法的结果是________.

解析:这个算法是求a,b,c三个数中的最小值,故这个算法的结果是2.

答案:2

7.下面给出了一个问题的算法:

第一步,输入a.

第二步,如果a≥4,则y=2a-1;否则,y=a2-2a+3.

第三步,输出y的值.

问:(1)这个算法解决的是什么问题?

(2)当输入的a的值为多少时,输出的数值最小?最小值是多少?

解:(1)这个算法解决的是求分段函数

y=2a-1,a≥4,a2-2a+3,a<4的函数值的问题.

(2)当a≥4时,y=2a-1≥7;

当a<4时,y=a2-2a+3=(a-1)2+2≥2,

∵当a=1时,y取得最小值2.

∴当输入的a值为1时,输出的数值最小为2.

8.“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人.

解:第一步,首先确定最小的满足除以3余2的正整数:2.

第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,….

第三步,在上列数中确定最小的满足除以5余3的正整数:8.

第四步,然后在自然数内在8的基础上依次加上15,得到8,23,38,53,….

第五步,在上列数中确定最小的满足除以7余4的正整数:53.

即士兵至少有53人.

高二数学设计教案篇6

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的&39;性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为R

2.值域:引导回忆单位圆中的正弦函数线,结论:sinx≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

高二数学设计教案篇7

教学目标

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以转化为一元一次不等式组;

(3)了解简单的分式不等式的解法;

(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

(7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.

教学重点:一元二次不等式的解法;

教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.

教与学过程设计

第一课时

Ⅰ.设置情境

问题:

①解方程

②作函数的图像

③解不等式

【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

【回答】函数图像与x轴的交点横坐标为方程的根,不等式的解集为函数图像落在x轴上方部分对应的横坐标。能。

通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

Ⅱ.探索与研究

我们现在就结合不等式的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)

【答】方程的解集为

不等式的解集为

【置疑】哪位同学还能写出的解法?(请一程度差的同学回答)

【答】不等式的解集为

我们通过二次函数的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题的解集,还求出了的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

下面我们再对一般的一元二次不等式与来进行讨论。为简便起见,暂只考虑的情形。请同学们思考下列问题:

如果相应的一元二次方程分别有两实根、惟一实根,无实根的话,其对应的二次函数的图像与x轴的位置关系如何?(提问程度较好的学生)

【答】二次函数的图像开口向上且分别与x轴交于两点,一点及无交点。

现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

【答】的解集依次是

的解集依次是

它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数的图像。

课本第19页上的例1.例2.例3.它们均是求解二次项系数的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

(教师巡视,重点关注程度稍差的同学。)

Ⅲ.演练反馈

1.解下列不等式:

(1)(2)

(3)(4)

2.若代数式的值恒取非负实数,则实数x的取值范围是。

3.解不等式

(1)(2)

参考答案:

1.(1);(2);(3);(4)R

2.

3.(1)

(2)当或时,,当时,

当或时,。

Ⅳ.总结提炼

这节课我们学习了二次项系数的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

(五)、课时作业

(P20.练习等3、4两题)

(六)、板书设计

25589