写方案网 > 教学教案 > 数学教案 >

2023四年级数学教案

时间: 新华 数学教案

2023四年级数学教案篇1

设计思路

1、本节微课以小灰灰上学记的故事作为导入,激起学生对角的认识产生兴趣;

2、通过多媒体课件的图片演示和介绍,使学生认识角的组成和特征;

教学设计

内 容

教学目的

1、初步认识角,知道角的各部分名称。

2、知道角有大有小,会比较角的大小。

教学重点难点

重点:帮助学生形成角的正确表象,初步建立角的概念。

难点:探索角的大小与两边张口的大小有关,与边的长短无关。

教学过程

一、创设情境,引入新知

师:小朋友,你喜欢看动画片吗?今天老师给你带来一个喜羊羊与灰太狼里面的故事——小灰灰上学记!

早上小灰灰高高兴兴地来到了羊村的学堂,但是喜羊羊却很生气地跟小灰灰说,昨天我听到你跟灰太狼谈论角的问题,你们是不是想打我们羊角的主意?小灰灰委屈地哭了起来。这时候,村长村长慢羊羊来了,你们都误会小灰灰了,平时不好好学习,没文化真可怕!他们说的不是羊角,而是数学图形中的“角”。现在请你跟我一起来“认识角”。

2、认识角

1、认识角的各部分名称。

从实际生活中的事物中找到角,继而从具体到把角抽象出来,仔细观察,再摸一摸感受角各部分的特点,尖尖的顶点,滑滑的、平平的边,引出角有一个顶点两条边。

2、角的大小与边的长短无关,只跟角的张口有关。

利用动画过程:一把剪刀把角的两条边剪短了,提出问题:这个角变小了吗?

容易得出,角是没有变小了,因为角的大小与边的长短无关,只跟张口的大小有关,张口越大,角就越大;张口越小,角就越小。

3、比一比

比一比一中,比较的是张口一样大,边的长短不同的两个角,再一次熟悉只要张口一样大,边的长短不影响两个角一样大这个结果。 比一比二中,比较的是一个边短张口大的角和边长张口小的角,结果是张口大的角大,即使角的边长角也不会变大,还是再一次强调角的大小只跟角的张口有关,跟边的长短无关。

4、小结儿歌

用村长送的一首儿歌来总结今天学习的内容,符合二年级小孩子的心里年龄,吸引学生的注意力,使他们回忆起本节课的学习内容。

2023四年级数学教案篇2

一、教学内容

两种常见的数量关系P52——P53例4、例5

二、教学目标

1.使学生初步认识单价、数量、总价以及速度、时间、路程的含义,在具体生活情境中理解和掌握这两组数量关系。

[2.认识这些常见的数量关系中各种不同数量的求法,会应用这些常见的数量关系解决一些实际问题。]

3.初步培养学生运用数学术语的能力和综合、抽象、概括的能力,渗透事物之间相互联系的观点。

三、教学重难点

[重点:使学生初步认识单价、数量、总价以及速度、时间、路程的含义,在具体生活情境中理解和掌握这两组数量关系。]

难点:初步培养学生运用数学术语的能力和综合、抽象、概括的能力,渗透事物之间相互联系的观点。

四、教学准备

多媒体课件

五、教学过程

(一)导入新授

谈话:同学们,这有一些物品的价格信息,请你来做售货员,算一算要花多少钱?(出示教材P52例4)

(二)探索发现

1、教学例4

(1)篮球每个80元,买3个要多少钱?

(2)鱼每千克10元,买4千克要多少钱?

学生尝试列式解答,指名汇报并板书。

[师:说一说,这两道题的条件有什么共同的特点?都是求什么的问题?

总结:两道题都是讲的买商品的价钱问题,题中篮球每个80元、鱼每千克10元,这样的每一件商品的价钱是单价(板书:单价),买3个、买4千克这样买的件数是数量(板书:数量),求一共用的钱是总价(板书:总价)。]

师:找一找,数学书的单价是多少?你还知道哪些物品的单价。

师:说一说第(1)题中篮球的单价、数量、总价各是多少,怎样求总价?(2)题呢?

[从上两题中你能发现单价、数量、总价之间的关系吗?生概括并板书

想一想如果知道总价、数量怎样求单价呢?生汇报

如果知道总价和单价又该怎样求数量呢?生汇报

总结:我们在识记这一组数量关系时,只要记住“单价×数量=总价”就可以根据乘法算式各部分之间的关系,就能想出“总价÷数量=单价”“总价÷单价=数量”]

2、教学例5

出示例题,独立解答

(1)一辆汽车每小时行70千米,4小时行多少千米?

(2)一人骑自行车每分钟行225米,10分钟行多少米?

学生尝试列式解答,指名汇报并板书。

师:说一说,这两道题的条件有什么共同的特点?都是求什么的问题?

[总结:两道题都是讲的行程问题,题中每小时行70千米、每分钟行225米,这样的在一个单位时间里行的路程,是速度(板书:速度),所用的4小时、10分钟是行走的时间(板书:时间),求出的280千米、2250米,这样的一共行的路是路程(板书:路程)。]

师:说一说第(1)题中汽车的速度、时间、路程各是多少,怎样求路程?(2)题呢?

[从上两题中你能发现速度、时间、路程之间的关系吗?生概括并板书。

想一想如果求速度,又该知道哪两个条件呢?怎样列式?生汇报

如果求时间,又该知道哪两个条件呢?怎样列式?生汇报]

总结:我们在识记这一组数量关系时,只要记住“速度×时间=路程”就可以根据乘法算式各部分之间的关系,就能想出“路程÷时间=速度”“路程÷速度=时间”

(三)巩固发散

教材P52-P53做一做,指名汇报

(四)评价反馈

说一说你有什么收获。

(五)板书设计

两种常见的数量关系

单价×数量=总价速度×时间=路程

总价÷数量=单价路程÷时间=速度

总价÷单价=数量路程÷速度=时间

[教学反思]

通过学习,学生初步认识单价、数量、总价以及速度、时间、路程的含义,并在具体生活情境中理解和掌握这两组数量关系。认识了这些常见的数量关系中各种不同数量的求法,会灵活应用这些常见的数量关系解决一些实际问题。

2023四年级数学教案篇3

一、指导思想和理论依据

数学是研究现实世界的空间形式和数量关系的科学,因此数形结合思想是重要的数学思想方法之一,也是分析问题、解决问题的有力工具。著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

二、教材分析

乘法分配律的教学是在学习乘法和加法的交换律与结合律的基础上进行的。目的是让学生对大量运算中的一类特殊的积和运算进行概括,使学生的计算在积累一定经验之后上升到一种理性认识,在小学阶段渗透恒等变换的思想,从而更好地发展数与代数的运算能力。

三、学情分析

在初步学习了三个运算定律后,当学生碰到“计算下面各题,能简算的要简算”此类题时,错误就更多了。究其原因,因为这类题不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的部分,并合理地进行简便运算。要想顺利完成这种题,学生必须要透彻理解简算的原理,完全把握简算的本质,既不能把可以简算的题轻易忽略了简算,也不能把无法简算的题错误地进行简算。经过整理归类,我发现学生简便运算主要是对运算定律混淆不清。

如:18×101=18×100×1=1800

125×48=125×(40+8)=125×40+8=5008

125×48=125×(40+8)=125×40×125×8=5000000

101×52=(100+1)×(50+2)=100×50+1×2=5002

25×64×125=25×(60+4)×125=25×60+4×125=20__

这些错误的发生,说明了学生对乘法结合律和乘法分配律这两条运算定律产生了混淆。这是由于乘法结合律与乘法分配律在表现形式上十分相近,致使一些学生造成知觉上的错误。

四、我的思考

著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

在教学乘法运算定律:“乘法交换律、结合律和分配律”时出现的各种问题,很多老师都是从“数”的角度来帮孩子加强理解,这对于孩子是有用处的。也有很多老师提出要加强练习,这样的做法也是有用处的。“练习不等同于重复”,练习不等于简单机械的重复操练,而是要敏锐发现学生学习的节点,分析成因,找到真正的症结所在,针对学生的学习困难,设计有价值的课堂教学。“数形结合的思想”是一种数学思想方法。通过“数形结合思想”在乘法运算定律中的教学,使复杂的问题简单化、使抽象的问题形象化、使模糊的问题明朗化,孩子们对知识本质的理解更加深入了,使他们由最初的迷茫发展至现在的茅塞顿开,达到了非常好的学习效果,提高了学习的效率。

教学目标:

根据以上分析我确定了本节课的教学目标:

1.引导学生将结合律、分配律的简便计算应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化。

2.借用数学模型(点子图)帮助学生区分结合律和分配律的本质特征。(结合律是拆数等分成相同的几组,所以连乘,分配律是不等分分成几个不同的块,所以乘加或者乘减。)

3.通过回顾错题的练习,让学生自觉用点子图帮助找错误原因,以提高正确率。

教学重难点:

重点:借用数学模型(电子图)帮助学生理解乘法结合律和分配律知识的本质特征,让学生能够正确区分使用这两种定律。

难点:正确认识乘法结合律和分配律的本质特征。

教学过程:

一、借助点子图帮助学生区分结合律和分配律的本质

(一)创设情境,引出点子图

1.光明学校要组织一些学生参加区运动会的入场式表演,同学们要站成这样的队形(PPT出示人站成的图形15×18),要求一共有多少人,谁会列算式?

(15×18)

2.如果用一个黑点来代表一名学生,站好的队形就成了这样的方阵(PPT出示点子图15×18)。

设计意图:创设情境,由生活中的方阵计算一共要多少名学生,转化为点子图求一共有多少个点,让学生体会数学来源于生活。

(二)展示算法多样化

1.学生四人一小组,看哪个小组能用尽量多的不同的方法来帮助巧算,并结合点子图把算式里的想法在点子图里圈一圈,一种方法用1张图,用彩笔圈点子图,圈的时候先要想好了再圈。四人一组,讨论操作。

2.汇报

(预设)15×18=15×9×2

15×18=15×6×3

15×18=15×(10+8)=15×10+15×8

15×18=15×(20-2)=15×20-15×2

15×18=5×18×3

15×18=(10+5)×18=10×18+5×18

15×18=(20-5)×18=20×18-5×18

学生分别把7种解法的点子图做个说明。

设计意图:由于本节课是在学生学习了乘法结合律和分配律之后进行的,一方面了解学生掌握知识的情况,另一方面展示算法多样化。

(三)分类,观察分析点子图及算式,找到两种定律的本质区别

1.分类

学生尝试把这些方法分分类并说一说为什么这么分?

2.找到结合律的特点:因为等分成几组,所以连乘

观察结合律的点子图分析其特点。

学生举例说明:15×18=15×2×9

15×18=15×6×3

15×18=5×18×3

3.找到分配律的特点:因为不等分,分几个不同的块,所以乘加或者乘减

观察分配律的点子图分析其特点。

学生举例说明:15×18=15×(10+8)=15×10+15×8

15×18=15×(20-2)=15×20-15×2

15×18=(20-5)×18=20×18-5×18

设计意图:通过分类,了解学生观察算式的角度,分类一共有两种情况:按方法分成结合律(点子图的特点“等分”)和分配律(点子图的特点“不等分”);按拆18和拆15分类。通过比较、引导学生观察“等分”成几组只能连乘;不等分,分几个不同的块,所以乘加或者乘减。从而找到结合律和分配律最本质的区别。

(四)概括:不同的拆分一定会带来不同的方法,要时刻想着点子图

PPT出示:

总结:看来我们在做题的时候,脑子里得想着点子图,是等分成几组,还是不等分分成几块,如果等分成几组就得连乘,不等分分成几块就得乘加或者乘减。看来不同的拆分一定会带来不同的方法,相同的方法也会有不同的做法。点子图真是帮了我们的大忙,找到了结合律和分配律最本质的区别。

设计意图:通过对比,观察拆数,让学生掌握在做相关类型题的时候看着拆数的不同,头脑中要结合点子图的特征,从而让学生明确“不同的拆分一定会带来不同的方法,相同的方法也会有不同的做法”。

二、回顾错题,利用点子图分析错误原因

回顾过去的学习出现过的错误利用点子图进行分析

(PPT:错题1)125×48=125×40×8

(PPT:错题2)如:125×48=125×(40+8)=125×40+8

设计意图:用探究到的结合律和分配律的本质区别,结合点子图说明错误原因,使学生加深对本质区别的理解。

三、拓展练习

8×12+4×36

四、课堂总结

今天这节课你印象最深的是什么?

总结:今天我们借助图来帮助我们研究数的问题,其实不光是点子图,还有其它图形也能帮助研究数的问题,希望同学们下次在碰到有关数的问题的时候能够想到我们的图形朋友。

2023四年级数学教案篇4

教学目标:

(1)知识与技能:能运用商不变的规律口算有关除法。

(2)过程与方法:让学生经历探索的过程,学会并用类比迁移的方法探索新知,通过观察、分析、交流、合作总结被除数和除数同时发生变化,商不变的规律。培养学生观察、比较、猜想、概括以及发现规律、探索新知的能力。

(3)情感、态度与价值观:引导学生经历探索过程,体验数学知识的探索性,体验发现乐趣,增强成功体验。

教学重点:

(1)引导学生自己发现规律,掌握规律;

(2)通用简单的语言表述规律;

(3)利用商不变的规律进行简便计算。

教学难点:

(1)引探讨发现规律的过程;

(2)用语言正确表述变化的规律。

学生情况:

兴趣是的老师。而且课标明确指出:“数学学习活动必须建立在学生认知发展水平和已有的知识经验基础之上。”四年级的小学生具有好动、好奇的心理特点,喜欢探究新的知识内容。学生之前已分别掌握了被除数不变,商随除数的变化而变化的情况和除数不变,商随被除数的变化而发生变化的情况。有了这些认识基础,再利用知识的迁移,他们一定能经过探索,发现并总结规律。

教学方法:

根据本课教学内容的特点和学生的思维特点,我选择了引导发现法为主,辅以谈话法、小组合作等方法的优化组合。充分调动学生各种感官参与学习,发挥学生的主观作用与老师的点拨作用,体现“学生是课堂的主体、教师是课堂的主导”,利用引人入胜的问题情境,生动有趣的故事激发学生学习的兴趣,调动学生学习的积极性,引导他们去发现规律、分析规律、解决实际问题、获取知识,从而达到训练思维、培养能力的目的。

教学过程:

一、创设情境,提出问题

利用生动有趣的故事导入新课。四年级的学生一般都喜欢听故事,用故事导入新课,能快速吸引学生的注意力到课堂中来。

(1)找两名学生学生,一个扮演孙悟空,一个扮演猪八戒:14块饼平均分,2天分完;140块饼平均分,20天分完。

(2)教师提问:真的像猪八戒想的那样,每天我可以多吃些了吗?通过这节课的学习,你就知道啦。

板书课题:商不变的规律

二、合作探究,发现规律

(1)提出问题:大屏幕出示如下的算式。要同学们先计算出商,再从上到下观察这些式子,注意分别用第2、3、4、5式与第1个算式进行比较,你发现了什么?5分钟时间,小组交流讨论。讨论出结果后,用行动告诉老师。

(2)小组讨论。小组成员激烈讨论,老师鼓励学生各抒已见,学生之间相互补充,用自己的语言总结发现规律。

(3)汇报交流。等班里大部分同学都安静坐好后,教师先找两位同学说出他们分别计算出的上面式子的商,然后找位于班级不同小组、不同层次的学生分别表述他们组发现的规律。

把几个算式放在一起进行对比。

经过对比,学生们会很容易地发现规律。先找班里左边的小组表述规律,他们会说“被除数乘一个数,除数也乘一个数,商不变”。这时,老师要教师适时加以评论表扬,说“你们组发现了被除数和除数乘一个数,商不变。有了这么棒的发现,真不错。”再找其他组进行补充,教师适时加以引导。全班有21个讨论小组,教师找10个组不断地进行加工补充。10个组占了全班将近50%的学生,经过这么多同学的补充和教师的引导,同学们最终会完整地说出这样的规律:被除数和除数同时乘相同的数,商不变。

(4)教师质疑:还有其他问题吗?引出条件:0除外。为什么是0除外呢?生:因为0乘任何数都得0。老师引导学生:你们觉得在这个规律中,哪几个词比较关键?学生会发现:同时、相同、0除外。为什么说是“同时”、“相同”?可以举例子来证明,从而得出规律:被除数和除数同时乘相同的数(0除外),商不变。引导学生用数学式子的方式把这个规律表达出来。

教师板书

(5)引导学生利用刚刚发现并总结规律和过程,再从下到上观察这些式子,注意分别用第2、3、4、5式与第1个算式进行比较,你发现了什么?

有了刚刚总结规律的方法,相信同学们能很快发现并说出结论:被除数和除数同时除以相同的数(0除外),商不变。

教师在刚刚板书的位置下面一行板书

(6)教师总结:这就是商不变的规律。全班学生齐读并背诵这两条规律。

(7)学生们发现了这两条规律,再回看课堂导入过程中分饼的故事,让学生们明白在刚才的故事中,孙悟空正是利用商不变的规律教育了贪婪的猪八戒。

三、巩固练习,扩展应用

题目的设计都是商不变的规律的灵活运用,使学生能进一步加深理解并学以致用。

1.我来问,我来答

(1)被除数乘2,除数怎样变化,商不变?

(2)除数除以10,被除数怎样变化,商不变?

2.判断对错。

(1)被除数和除数同时乘5,商就应乘25。()

(2)两数相除的商是6,如果被除数和除数同时除以3,商还是6。()

(3)已知14÷2=7,则(14×5)÷(2×3)=7。()

3.从上到下,根据第一行的商,写出下面两题的商。

4.在○中填上运算符号,在□中填上数。

直接由第1个式子到第4个式子,学生接受起来会比较困难,所以用第2个式子和第3个式子作为过渡,这样学生就可以很容易地理解并得知第4个式子该如何填写了。

4.自主评价,促进反思

和大家分享一下,本节课你的收获吧!只要学生说出和本节课有关的学习内

容,教师都适时加以表扬鼓励。让同学们自己反思学到的知识,既注重了学法、情感等方面的总结,又让学生体会到数学来源于生活,又应用于生活的道理。

五、说练习的内容

课堂作业:课本P955

板书设计:

商不变的规律

2023四年级数学教案篇5

教学目标

1、通过解决姐、弟二人的邮票张数问题,进一步理解方程的意义。

2、通过解决问题的过程,学会解形如2X-X=3这样的方程。

教学重难点

学会解形如2X-X=3这样的方程

教学过程

活动一:创设情境,建立模型。

1、看图说一说你收集到哪些数学信息?交流。

2、图中告诉我们等量关系是什么?

(姐姐的张数+弟弟的张数=180)

3、求姐、弟各有多少张?你会画线段图吗?画一画。

X

弟弟

3X180

姐姐

4、设谁为X比较简便?为什么?

5、解:设弟弟有X张邮票,那姐姐呢?你会列方程解答吗?

6、学生汇报。

7、解:设弟弟有X张邮票,那姐姐有3X张邮票。

X+3X=180X+3X是多少?你怎样想?

4X=180(1个X与3个X合并起来是4X)

2X=90

X=45

3X=45×3=135

答:弟弟有45张邮票,那姐姐有135张邮票。

8、书写时要注意什么?

9、做完后还需要验证,怎样验证?

10、想一想,如果利用姐姐比弟弟多90张的条件,可以怎么列方程?

先画线段图,再列,方程解答,并交流。

解:设弟弟有X张邮票,那姐姐有90+X张邮票。

90+X+X=18011、通过刚才解决问题,你们有什么收获?

活动二:解释运用:试一试

解方程:5Y+Y=96X+3X=724M-2M=48

Y+Y=335X-2X=1232X-X=4

(1)读题

(2)怎样解方程

(3)怎样检验?

练一练

1、解方程:

2、岚岚几岁了?

列方程并解答

理解题意,解方程解答,并检验

X+6X=35或7X-X=30

3、列方程30X=600。

生独立完成。

4、(1)书上告诉了我们什么?你能提什么问题?

(2)怎样列方程?

25X-4X=31.5

(3)怎样解方程?

(4)你怎样验证?

板书设计

邮票的张数

解:设弟弟有X张邮票,那姐姐有3X张邮票。

X+3X=180X+3X是多少?你怎样想?

4X=180(1个X与3个X合并起来是4X)

2X=90

X=45

3X=45×3=135

答:弟弟有45张邮票,那姐姐有135张邮票。

2023四年级数学教案篇6

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

2023四年级数学教案篇7

教学目标:

1.会正确读、写多位数,并能比较数的大小。

2.能用万、亿为单位表示大数。

3.能根据实际问题的需要求一个数的近似数。

教学重点:会正确读、写多位数,并能比较数的大小。

教学难点:能根据实际问题的需要求一个数的近似数。

教学过程:

一、多位数的读、写的练习

练习一第1题:先回顾计数单位的顺序,再根据书中的数据说说它们是几位数,最高位在什么位上,并进行读、写。

二、多位数的改写

练习一第2题:先复习多位数的不同数位上数字的不同意义。再进行数的改写。

三、读写游戏。

同桌间进行的游戏:第1步一个同学读数,另一个同学根据所读的数写数,经过几次读数,两人可交换角色;第2步一个同学写数,另一个同学根据所写的数读数,然后交换角色进行。在同桌练习的基础上,可选派代表在全班进行比赛,以激发学生的兴趣。

四、多位数比大小

做第4题:完成后说说比较的方法。

(一)组数游戏:

请每个同学准备一些数字卡片;然后请学生代表提出组数的要求,根据要求每个同学都摆一摆;接着,选择一部分学生所摆的数,供全班观察讨论。

(二)有关近似数的练习

讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。

板书设计:练习一

亿级万级个级

千百十亿千百十万千百十个

亿亿亿万万万

13820000

计数单位一千三百八十二万

2023四年级数学教案篇8

一、说教材

本课时内容是在学生初步理解小数的意义,认识了小数的特征,并掌握了小数基本性质的基础上进行教学的。本课时内容的教学我从学生已有的生活经验出发,让学生在经历运动会排名次和购买体育用品等简单的生活实际情况来获取知识,从而提高学生对数学的学习兴趣。

教学目标:

1、知识技能目标:体验小数比较大小的策略的多样性,会比较简单小数的大小。

2、过程与方法目标:通过小组合作交流等活动,培养学生的数学应用意识,合作交流意识;培养学生有顺序地思考、讨论问题的能力。

3、情感态度目标:让学生感受数学与生活的紧密联系,激发学生探索数学的兴趣,获取成功的喜悦。

教学重难点:

探究并概括小数大小比较的一般方法。

二、说教法学法

情境教学,在例题的教学中创设符合学生生活情境的学习环境,引导学生投入到学习当中。

自主探索、合作交流的学习方法。学生们经通过观察、比较和交流等学习活动,自主探索小数大小的比较方法。

三、说教学过程

(一)情境导入

师:

1.六一儿童节就要到了,每年的六一学校都举行运动会,在运动会中你都参加了哪些体育项目?成绩怎样?(学生说)

2.老师收集了一张上次运动会的跳远成绩记录单,你们想不想看一看?

出示表格

姓 名

小 明

小 红

小 莉

小 军

成 绩

3.05米

2.84米

2.88米

2.93米

请同学们观察一下,从表格中你发现了哪些数学信息?根据这些信息你能提出哪些数学问题?同学们提出了这么多有价值的问题,今天我们就来研究:如果想给他们排出名次,想想应该怎么办?(比较他们的大小)怎么比较小数的大小呢?这节课我们就来研究—小数的大小比较。(板书课题)   (二)自主探究 合作学习

师:请同学们先独立思考,然后结合老师的要求将你的想法在小组里交流,看哪个小组想到的方法最多?我们先来看一下要求(出示要求:1.每个人在交流中都要说出自己的想法。2.每组推荐一名代表来汇报小组的想法,如果你认为小组代表说的不完整,本小组或其他小组可以给予补充。)

1.独立思考。

2.小组内汇报交流自己的想法。

(三)交流导思

1.学生汇报,反馈后问:这么多方法中,你最喜欢哪种方法?(暂不评价)

3.学生汇报并说比较方法。

4.总结。现在同学们能不能根据你的经验总结比较小数的大小的方法呢?

5.学生汇报后出示课件(比较小数的大小,先比较整数部分,整数部分的数大,这个数就大;如果整数部分相同,就比较十分位,十分位上的数大,这个数就大;若整数部分和十分位上的数都相同,就比较百分位,百分位上的数大,这个数就大;依此类推。)

(四)学以致用

1.按照惯例,运动会结束前学校要公布各班级的总成绩,你们想知道各班的成绩吗?我们一起来看一下。(课件出示)

年 级

一年级

二年级

三年级

四年级

五年级

六年级

得 分

93.45

92.84

95.84

92.80

97.50

96.85

师:结合小数大小比较的方法 ,我们来看一下上次运动会哪个班级表现出色,取得第一名,哪个班级的成绩最不理想,需要努力?

2.今年学校为了让同学们过一个丰富多彩的儿童节,运动会又增加了乒乓球和踢毽子比赛,你们想不想参加?你想参加哪个项目?老师去了几个体育用品店分别看了乒乓球拍和毽子的价格,你们来判断一下,去哪个体育用品店比较便宜?

26252