写方案网 > 教学教案 > 数学教案 >

主题数学教案

时间: 新华 数学教案

主题数学教案篇1

一、教学目标:

1、知识与技能:

(1)结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

四、教学过程

(一)新课导入

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;

(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数

分裂次数12345678

细胞个数248163264128256

(2)1个细胞分裂的次数与得到的细胞个数之间的关系可以用图像表示,它的图像是由一些孤立的点组成

(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数?细胞个数随着分裂次数发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量Q;

(2)用图像表示每隔20年臭氧含量Q的变化;

(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.

解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512,0.997540=0.9047,0.997560=0.8605,0.997580=0.8185,0.9975100=0.7786;

(2)用图像表示每隔20年臭氧含量Q的变化,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道,随着时间的增加,臭氧含量Q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量Q近似满足关系式Q=0.9975t,随着时间的增加,臭氧含量Q在逐渐减少.

[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.

说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.

分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.

解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2

补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nN+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.

补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。

主题数学教案篇2

一、活动目标:

1、准确感知5以内的数量,学习把相同数量的实物卡归放在一起。

2、让幼儿练习有规律的交替排列实物。

3、培养幼儿的观察和判断能力。

4、引发幼儿学习的兴趣。

5、培养幼儿比较和判断的能力。

二、活动准备:

PPT表格

三、活动过程:

(一)准确感知5以内的数量

1、将水果教具贴在果树上,引出故事情景:

师:小朋友你们看,小猴家里有一个果园,它种的水果都熟了,就请小兔、小猫、小狗、小鸡、小鸭一起到他的果园做客,现在我们一起去看一看,小猴家的果园里都有些什么水果?(梨、苹果、桔子等水果)

2、引导幼儿点出各种果树上的水果,说出各水果的总数,并用相应的数字表示。

师:哎呀!果园里有这么多的水果,那你能告诉我,果园的梨树上有几个梨子?苹果树上有几个苹果?桔子树上有几个桔子等?

3、师:小猴今天请了很多的客人,那小猴都请了哪些客人?出示小动物,(一起数)有这么多的小动物,你们知道,每种小动物来了几只吗?提问:如:小兔有几只?(小兔1只、小猫2只、小狗3只、小鸡4只、小鸭5只),请幼儿点数小动物,说出总数,并用数字表示出来。

小结:嗯!小朋友们都数的很对。

(二)按量归类

1、今天来了这么多的客人,小猴有点忙不过来了,它想请你们帮帮忙,一起来招待客人,给动物们送水果,好吗?(启发幼儿按数字分水果,在小动物下面1对1地粘贴1个水果。)

2、师:你们看,这里有几只小鸡?(4只)。那谁知道要给四只小鸡送几个水果吗?请小朋友找一找,什么水果和小鸡的数量一样也是(引导幼儿寻找与4只小鸡一样多的水果并点数验证。)小结:对了,他们的数量都是4,所以我们就把数量相同的卡片放在一起。而且要边放边说:4只小鸡和4个橘子放在一起。(老师示范)。

3、师:谁知道小鸭子吃什么水果呢?你来找一找,把水果送给它吃,好吗?

师:小朋友真棒!但是还有一些小动物没有吃到水果,谁能把水果送给它们,你想先送给谁呢?(请个别幼儿上来操作,其他幼儿验证。)

4、师:他放得对吗?说说谁和谁放在一起,为什么把他们放在一起?(引导幼儿大胆的表述)。

(三)幼儿操作师:

1、小动物们吃了小猴果园里的水果,都很开心,天快黑了,小动物们想要回家了,它们都住在动物王国里,动物王国里的房子呀!它们的门牌号是用点点来表示的。(老师展示房子,并认出与1-5相对应的点点数),第一组:小朋友一起来把它们送回家,好吗?这只小兔是单独的一只,我们呀就要把她送到门牌号是一的房子里。(做示范,将这只蝴蝶插摆在门牌号为一的房子里)

2、第二组:这组游戏和刚做的游戏时一样的,给小动物找水果的时候,小朋友首先要看看卡片上有什么动物,数一数每种动物有几只,再找找什么水果的数量和它的数量是一样多的,最后把它们放在同一个格子里。而且要边放边说:把几的什么和几的什么放在一起。

3、第三组:我这里还有一些图片,图片上印了小动物,这些小动物要去旅行,请小朋友先数数有几个小动物,有几辆交通工具,把相同的数量用线连起来。

(四)幼儿操作,教师巡回指导。

(五)评价幼儿操作情况

(六)结束活动。

让幼儿按照老师的要求收拾整理操作材料。小朋友,我们一起去外面玩吧,和老师说再见。

四、教学反思:

数学来源与现实,存在于现实,并且应用与现实,数学过程应该是帮助幼儿把现实问题转化为数学问题的过程。教育活动的内容选择应既贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验和视野。

主题数学教案篇3

函数性质

一、单调性

1.定义:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,若都有f(x1)f(x2),那么就说函数在..区间D上单调递增,若都有f(x1)f(x2),那么就说函数在区间D上单调递减。例1.证明fxx1在1,上单调递增x

总结:

1)用定义证明单调性的步骤:取值----作差----变形-----定号-----判断2)增+增=增

减+减=减

-增=减

1/增=减3)一次函数ykxb的单调性例1.判断函数y2.复合函数分析法

设yf(u),ug(x)x[a,b],u[m,n]都是单调函数,则yf[g(x)]在[a,b]上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减

1的增减性x1性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表:

ug(x)

yf(u)

yf[g(x)]

增增减减增减增减增减减增

例1.判断函数ylog2(x1)在定义域内的单调性

一、函数单调性的应用1.比较大小

例1.若f(x)在R上单调递增,且f2a1f(a3),求a的取值范围

3例2.已知函数f(x)在0,上是减函数,试比较f()与f(a2a1)的大小

42.利用单调性求最值

1例1.求函数yx1的最小值

x

x22xa1例2.已知函数f(x),x1,.当a时,求函数f(x)的最小值

x2

11例3.若函数f(x)的值域为,3,求函数g(x)f(x)的值域

2f(x)

练习:1)求函数yx21x在0,的最大值

112)若函数f(x)的值域为,3,求函数g(x)f(x)的值域

2f(x)

3.求复合函数的单调区间1)求定义域

2)判断增减区间3)求交集

12例1.求函数yx2x3的单调区间

2练习:求函数yx22x8的单调增区间

4.求参数取值范围

例1.函数f(x)x22ax3在区间1,2上单调,求a的取值范围

二、奇偶性

1.判断奇偶性的前提条件:定义域关于原点对称例1.奇函数f(x)定义域是(t,2t3),则t

.2.奇函数的定义:对于函数f(x),其定义域D关于原点对称,如果xD,恒有f(x)f(x),那么函数f(x)为奇函数。

3.奇函数的性质:1)图像关于原点对称2)在圆点左右单调性相同

3)若0在定义域内,则必有f(0)0

1奇函数的例子:yx,yx3,yx,ysinx

x4.偶函数的定义:对于函数f(x),其定义域D关于原点对称,如果xD,恒有f(x)f(x),那么函数f(x)为偶函数。

5.偶函数的性质:1)图像关于y轴对称2)在圆点左右单调性相反

偶函数的例子:yx2,yx,ycosx

6.结论:奇+奇=奇,偶+偶=偶,奇奇=偶,偶偶=偶,奇偶=奇

四、常见题型:1.函数奇偶性的判定

4x2例1.判断函数f(x)的奇偶性

x22

例2.判断f(x)(x2)

2x的奇偶性2x2.奇偶性的应用

例1.已知f(x)x5ax3bx8,f(2)10,则f(2)_______

例2.已知f(x)是奇函数,且当x0时,f(x)x(x2),求x0时,f(x)的解析式

例3.设f(x)是偶函数,g(x)是奇函数,且f(x)g(x)

3.函数单调性与奇偶性的综合应用

例1.设偶函数f(x)在[0,)为减函数,则不等式f(x)f(2x1)的解集是。

例2.已知函数f(x)是定义在实数集R上的函数,若f(x)在区间5,5上是奇函数,在区间0,5上是单调函数,切f(3)f(1),则()

A.f(1)f(3)B.f(0)f(1)C.f(1)f(1)D.f(3)f(5),

例3.函数f(x)axb121,1是定义在上的奇函数,且f()2251x1,求f(x),g(x)x11)求f(x)的解析式

2)判断函数f(x)在1,1上的单调性3)解不等式f(t1)f(t)0

主题数学教案篇4

一、教学内容:

1、根据方向和距离两个条件确定物体的位置。

2、根据方向和距离,在图上绘出物体的距离。

3、体会位置关系的相对性。

4、描述并绘制简单的路线图。

二、教学目标:

1.通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法。

2.使学生能根据方向和距离确定物体的位置,并能描述、绘制简单的路线图。

三、教学重点:

1、体会位置关系的相对性。

2、根据方向和距离确定物体的位置并在图上绘出物体的距离。

四、课时安排:

1、根据方向和距离两个条件确定物体的位置。1课时

2、根据方向和距离,在图上绘出物体的距离。1课时

位置与方向(一)

教学内容:根据任意方向和距离确定物体的位置

教学目标:

1、通过具体的活动,认识方向与距离对确定位置的作用。

2、能根据任意方向和距离确定物体的位置。

3、发展学生的空间观念。

教学重、难点:

1、能根据任意方向和距离确定物体的位置。

2、对任意角度具体方向的准确描述。

教学过程:

一、设置情景:

如果你是赛手,你将从大本营向什么方向行进?你是怎样确定方向的?

小组讨论:运用以前学过的知识得到大致方向。

1、训练加方向标的意识:加个方向标有什么好处?

2、突出以大本营为观测点:为什么把方向标画在大本营?

探究任意方向和距离确定物体的位置。

质疑:

1、知道吐鲁番在大本营的东北方向就可以出发了吗?

2、如果这时就出发可能会发生什么情况?

小组讨论:

沿什么方向走就能保证赛手更准确、更快的找到目的地。

研究时,可以用上你手头的工具。

吐鲁番在大本营东偏北30度

练一练:你说我摆,为小动物安家。

(课前剪好小图片,课上动手操作。)

例:我把熊猫的家安在偏,的方向上。

例:我把熊猫的家安在西偏北30度的方向上,熊猫摆在哪?讨论:为什么猴子的家在西偏南30度,而小兔家在南偏西30度的方向?

解决问题,寻找得出距离的方法。

如果你的赛车每小时行进200千米,你要走几小时能到达考察地?

图上没有直接标距离,你有什么办法解决它呢?

仔细观察地图,你发现了什么?小组试一试解决。

二、练习:

1、以雷达站为观测点,填一填。

护卫舰的位置是偏度,距离雷达站千米。巡洋舰的位置是偏度,距离雷达站千米。鱼雷艇的位置是偏度,距离雷达站千米。

2、以电视塔为观测点,按要求填空。

文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。

三、课后延伸:

游乐场要新建两个游乐项目:一个在观览车西偏北40o方向

上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20o方向上,约150米处。请你在平面图上标出这个新项目的位置。

位置与方向(二)

教学内容:根据方向和距离,在图上绘出物体的距离

教学目标:

1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。

2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。

3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

教学重、难点:根据方向和距离,绘制平面示意图。

教学过程:

一、复习引入

合作绘图、练习巩固

目的是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。

(1)停车场在广场的方向,距离大约是米。小红家在广场的偏方向,距离大约是米。

(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。

1、出示学校的录相或图片

问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?

出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。

2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?

3、小组汇报完成平面图绘制的计划,教师进行梳理:

(1)绘制平面图的方法:

先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。

(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。

4、小组活动,绘制平面图。

5、展示各组绘制的平面图,集体进行评议。

(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。

订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

(2)比较各个平面图,为什么有的图大,有的图小?

小结:1厘米表示的大小不同,图的大小也不同。

二、练习:

1、完成书上习题21页3、4题并订正。

2、在纸上设计小区,并说明各个建建筑的位置。

老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等。

教后记:

“位置”的教学内容是第一学段相应教学内容的扩展和提高。学生在低年段已经学习了如何根据行、列确定物体的位置,并通过中年级“位置与方向”的学习,知道了在平面内可以根据两个条件确定物体的位置。本课在此基础上,让学生学习用数对表示具体情境中物体的位置,进一步提升学生的已有经验,培养学生的空间观念。

单元小结

通过学习,大部分学生基本能够正确判断物体的方向和距离,能够在方位图上按照有关要求正确画出物体的位置并正确绘制方位图,判断比较准确,绘图规范,但是个别学生总是找不准方向,因而不能判断方向,也不能够正确绘制方位图。

主题数学教案篇5

教学内容:教科书第96~97页,练习十八第5~14题。

教学目标:

1、通过练习,使学生进一步掌握一个数除以小数的计算方法,能真确计算。

2、使学生在练习中感受商的一些变化规律,在解决简单实际问题的过程中,体会除法计算的实用价值,发展学生的数学思考能力。

教学过程:

一、基础训练

1、完成第5题。

集体口答,说说0.1÷0.05、0÷0.24的思考过程。

2、完成第6题。

独立完成,比一比每组中的三道算式和结果,说说有什么发现?

引起商的变化的原因是什么?

3、完成第7题。

独立计算,按要求比较。

什么情况下,商比被除数小?什么情况下,商比被除数大?

4、完成第8题。

你根据什么判断的?

二、提高训练

1、独立完成第(1)题的计算。

你还能提出用除法计算的问题吗?怎么解决呢?

2、完成第10题。

先计算每组中的两题,再比价,说说有什么发现?

哪一道题计算比较简便?

3、完成第11题。

每一题应该先算哪一步呢?

运算顺序是怎样的?和整数四则混合运算顺序相同吗?

4、完成第12题。

你怎样理解“层高”的意思的?

你是怎样想的?怎样列式呢?

每一步什么意思?为什么要加1?

独立完成计算。

5、完成第13题。

你能列表整理条件和问题吗?

白色奶油 5.6 ?克

彩色奶油 2.5克 100克

在小组中列表整理并交流方法。

6、完成第14题。

你准备怎样解决这些问题呢?

还有其它的方法吗?

三、课堂小结

通过这节课的练习,同学们的计算又有了进步,解决问题的能力也提高了。

发现了小数除法中的规律,并且能把这些规律应用在计算上,在后面的学习中,还要多思考,多练。

主题数学教案篇6

教学准备

教学目标

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学重难点

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学过程

【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。_

【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

一、基础训练

1.某种细菌在培养过程中,每20分钟_一次(一个_为两个),经过3小时,这种细菌由1个可繁殖成()

A、511B、512C、1023D、1024

2.若一工厂的生产总值的月平均增长率为p,则年平均增长率为()

A、B、

C、D、

二、典型例题

例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,问到第n期期末的本金和是多少?

评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期(存期+1)利率]

例2:某人从1999到20__年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20__年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.问经过多少年的努力才能使全县的绿洲面积超过60%.(lg2=0.3)

例4、.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数.

主题数学教案篇7

教学目标:

1.通过练习,强化学生对年、月、日之间关系的理解。

2.让学生体会所学知识的应用价值,加深学生对所学知识的理解。

教学重点:强化学生对年、月、日之间关系的理解。

教学难点:体会所学知识与现实生活的必然联系。

教学准备:课件

教学过程:

一、知识再现

1.课件出示表格,并让学生填写表格。

年()个月

大月

小月

2.填空:平年的2月有()天,全年有()天;闰年的2月有()天,全年有()天。通常每()年里有()个平年,()个闰年。公历年份数除以()没有余数的一般是闰年;公历年份数是整百数的,必须除以()没有余数才是闰年。

二、基本练习

1.完成教材第49页“练习六”第1题。

引导猜测:小明的生日是下个月的第1天,你知道是几月几日吗?

要求:请用类似“我的生日在教师节前两天”的语言描述自己的生日让其他同学猜。

2.完成教材第49页“练习六”第2题。

(1)提问:你知道爸爸、妈妈的生日吗?在今年的年历上把它们圈出来。

(2)追问:爸爸、妈妈的生日过了吗?在爸爸、妈妈的生日这一天,你为他们做了什么?还没有过的同学,你打算怎样给爸爸、妈妈过生日?

3.完成教材第49页“练习六”第3题。

让学生根据题意,挑一个自己最喜欢的月份,找出×月1日是星期几,制作一个月历,并完成以下要求。

(1)在表中圈出节日、纪念日。

(2)算一算这个月一共上课多少天,休息多少天?

(3)你还想说些什么?在小组里说一说。

三、综合练习

1.完成教材第50页“动手做”。

学生拿出准备好的月历卡,四人一组做框数游戏。

(1)要求:每次用长方形横着框出3个数,说说这3个数之间的关系,算出它们的和。

先指名回答,再将学生的算式随机写在黑板上,让学生寻找规律。

得出:三个数的和是中间数的3倍。

(2)要求:每次用长方形竖着框出3个数,说说这3个数之间的关系,算出它们的和。

先指名回答,再将学生的算式随机写在黑板上,让学生寻找规律。

得出:三个数的和是中间数的3倍。

(3)追问:还可以框出几个数?怎样框?试一试。

2.出示教材第50页“你知道吗”内容。

提问:同学们,我们平常所说的一年四季和一年的四个季度一样吗?

引导学生仔细阅读,说说从文中你知道了什么。

指名回答,明确:一年四季与一年的四个季度是有区别的。

四、反思总结

通过本课的学习,你有什么收获?还有哪些疑问?

五、课堂作业

《补》

26452